
Syntax-Directed Editing of General Data Structures

Christopher W. Fraser

Department of Computer Science, University of Arizona,
Tucson, Arizona 85721

Abstract

Program editors help users create syntactically correct
programs. Though such editors normally edit parse trees,
applying similar techniques to other tree structures that
need editing helps both users and implementors. This
paper describes an editor that accepts a grammar describ-
ing a hierarchical data structure and allows the user to
enter and edit arbitrary trees having this structure. It
displays the pros and cons of this approach using instances
of this editor that edit formatted documents, simple line
drawings, and stick figures for trees.

1. Introduction

Program editors [Sandewall, Teitelbaum, van Dam]
help users create programs. They prevent the entry of syn-
tactically incorrect programs, they offer abbreviations for
verbose constructs, and they display programs in a
pleasant, consistent fashion. Though program editors are
typically syntax-directed, and though structures other than
parse trees require editing [Fraser, Fraser and Lopez, van
Dam], little has been said about exploiting the generality
that syntax-direction allows. For example, a syntax-
directed editor might be given a description of the structure
that document formatters impose on text. Users would be
able to move sections and paragraphs as logical units, and,
just as program editors compile code as it is entered, a
document editor might format text as it is entered, display-
ing the formatted result instead of interleaved text and for-
matter commands, lmplementors should also benefit. Just
as compilers driven by formal language descriptions are
usually easier to to understand, code, and modify than
their ad hoc counterparts, an editor driven by a formal
structure description should make it easier to create new
editors (e.g., for new structures) and to modify old editors
(e.g., to accommodate different tastes in formatting).

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distri-
buted for direct commercial advantage, the ACM copy-
right notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy oth-
erwise, or to republish, requires a fee and/or specific per-
mission.
o 1981 ACM 0-897/91-050-8/81/0600/0017 ~IG0.75

This paper describes a syntax-directed editor, sds, and
its application to the problem of editing general data struc-
tures. It displays the pros and cons of sds' approach
through examples of its instances. Though sds has been
used to build a typical program editor (for a subset of the C
programming language [Kernighan]), this paper will focus
on less conventional applications: a binary-tree editor, an
interactive document formatter, and a graphics editor.
Section 2 presents these instances. Section 3 discusses sds'
implementation and future.

2. Example Editors

2.1 A Binary-Tree Editor

sds is best understood through examples, and the sim-
plest instance of sds edits uninterpreted binary trees that it
displays on a graphics terminal by connecting nodes with
arrows, sds extracts all of its structure-dependent parame-
ters from a grammar that resembles grammars accepted by
typical compiler-compilers [Johnson]. The grammar
describing binary trees has only one production:

t r ee = v a l u e t ree t ree : d o t r e e (v a l u e , t r e e , t r e e 2)

The syntax description appears before the colon. It
says that a tree is a value and two subtrees. The grammar
need not say that trees may be empty because sds allows
any field to be left empty until is it convenient to fill it.

The semantic action appears after the colon. Like sds,
it is written in SNOBOL4. In general, id in the semantic
action refers to the first occurrence ofnonterminal id in the
syntax description, and idn refers to the nth occurrence of
nonterminal id for n>l. Thus tree2 in the semantic action
above refers to the second occurrence of tree in the the syn-
tax description. The semantic action above displays binary
trees by passing the value and subtrees to subroutine
dotree, which formats them for display. The code for the
binary-tree editor's semantic routines is shown below. It is
included only to suggest how sds is instantiated - - SNO-
BOL4 details not are important here. An explanation fol-
lows the code.

17

cwfraser
Note
© ACM, 1982. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the ACM SIGPLAN/SIGOA symposium on Text Manipulation, {0362-1340, (1982)}. http://doi.acm.org/10.1145/872730.806449

p x = 3 9 ; p y = 0 ; d x = 2 0
DEFINE('dosub(x,bpx,bpy,px,py,dx) ')
DEFINE('dotree(v,l,r)') :(ends)

dosub dosub = DIFFER(x) l ine(bpx,bpy+l ,px,py-1) put(x)
:(RETURN)

dotree dotree = curpos(px - SIZE(v) / 2, py) v
dotree = dotree dosub(I,px,py,px-dx,py+4,dx/2)
dotree = dotree dosub(r,px,py,px+dx, py+4,dx/2)
:(RETURN)

ends

The first line initializes variables that hold the screen coor-
dinates at which the root is to be displayed (px,py) and the
horizontal displacement between the root and its descen-
dants (dx). The remaining lines define dotree and its sub-
routine dosub that draws subtrees. If a subtree is empty,
dosub returns nothing. Otherwise, it returns code that
draws a line from a node to one of its subtrees (line(...))
and then draws the subtree itself (put(x)). put is sds ' display
routine. It invokes the semantic actions, and most seman-
tic actions call it recursively to display subtrees, dotree
produces code that centers a value at position (px,py), and
then calls dosub to produce code for the left and right sub-
trees. These calls temporari ly adjust px, py, and dx to
move subtrees down, right or left, and closer together.

This code is appended to the grammar, and a syntax
preprocessor compiles the result into a record declaration
for datatype tree (with fields value, tree, and tree2) and
code to check the syntax of input and to format a binary
tree for output. The resulting code is loaded with sds to
form a complete editor.

sds is a screen editor. It always displays the current
version of some record (called the 'current ' record) in the
structure being edited. Most semantic actions display
records by recursively displaying their subfields, so sds
usually displays an entire subtree of the complete 'parse'
tree, though less ambitious semantic actions may be given.
The user moves about by striking the terminal 's cursor con-
trol keys: down moves to the current record's first field, up
moves back, right and left move to an adjacent field, and
home moves to the root. For example, i fsds is displaying

1
/ \
2 3

4 5 6 7

down causes it to display

1

because the first component of a record of type tree is its
value field. A subsequent right causes it to display

2

4 5

because the second component of a record of type tree is its
first subtree. A subsequent up would move back to the first
display. Fields are traversed in this order because the
grammar gives them in this order. Were the syntax of trees
changed to

tree = tree value tree : dotree(value,tree,tree2)

the initial down would move to the left subtree, and the
subsequent right would move the value field.

All other sds commands are entered by typing a line of
text.~ To enter a terminal string or leaf, the user.types the
string that is to replace the current record. Subtree dele-
tion is a special case of this command - - the user merely
replaces the current record with the null string. To enter a
record corresponding to a nonterminal, the user types the
name of the nonterminal preceded by a period. After such
a command, sds drops down to focus on its first empty
field. For example, if the user types the command .tree,
sds creates a new node of type tree and drops down to its
value field so that the user may start filling in the new sub-
tree.

sds offers a few structure-independent commmands.
.hide suppresses the current record (and thus its descen-
dants) in subsequent displays, saving screen space, and
.show causes the current subtree, if hidden, to appear once
again in subsequent d i sp l ays . .wf i l e writes the current
record and its descendants to file, and .rfile reads a subtree
from such a file and replaces the current record with it.
.pick saves a pointer to the current record, and .put replaces
the current record with the last-picked r eco rd . .p i ck and
.put can be used to insert and delete parts of trees. For
example, a new node may be inserted above the root by
picking the root, replacing it with a new node, and putting
the old root down as one of the new root 's subtrees. Alter-
nately, the root may be deleted and replaced with one of its
subtrees by picking the subtree and putting it down on the
root.

2.2 A Document Editor

Another instance of sds edits simple documents,
displaying not interleaved formatter commands and text,
but the final formatted result [Coulouris, Shaw, Shaw et
al.]. It uses the same code as the binary-tree editor, but its
grammar and semantic routines differ:

paper= tit le sect : center(tit le) nl nl put(sect)
sect = header pp sect: header nl nl put(pp) put(sect)
pp = text pp : break(text) nl put(pp)

That is, a paragraph is some text and a pointer to the next
paragraph, a section is a header and pointers to its first
paragraph and the next section, and a paper is a title and a

~sds' command language has been influenced by the Cor-
nell Program Synthesizer [Teitelbaum].

18

pointer to the first section. Further, a paper is presented by
centering the title (center(title)) and appending two 'new-
line' characters (nl nl) and the formatted sections
(put(sect)); a section is displayed similarly, though its
header is not centered; a paragraph is displayed by insert-
ing newlines so as to fill each line (break(text)). The code
for center and break is appended to the grammar, and the
result is compiled into a list of record declarations (for
datatypes paper, sect, and pp) and code to check syntax on
entry and to format a document 's parse tree for output.

Though a written description is a poor substitute for an
interactive demonstration, the following trace suggests
how sds is used. Each bit of indented text below describes
the effect of one command. The prompt orients the user
with the list of field names used to reach the current
record. l

prompt:
command: .paper

tells sds to create a record of type paper, drop down
to its (null) title field, display it, and wait for a com-
mand. Before creating any record, sds checks to see
that it is syntactically correct at this point in the tree.
Had the user requested a paragraph, sds would have
created nothing.

prompt: title
command: Syntax-Directed Editing

tells sds to enter the given string as the title, advance
to the paper's sect field, display it, and wait for a
command.

prompt: sect
command: .sect

tells sds to create a sect record, attach it to the
paper, and drop down to its first field.

prompt: sect header
command: Introduction

tells sds to enter ' In t roduct ion ' as the section header
and to advance to the section's pp field.

prompt: sect pp
command: .pp

tells sds to create a pp record and to drop down to its
text field.

prompt: sect pp text
command: Program editors help users...

tells sds to enter a string in this field and to advance
to the field that will hold the next paragraph. This

~If a field may be occupied by items of several different
types, the type of the current resident is appended to the
field name so that subsequent field names will make sense.
Alternately, sds could be extended to offer a command to
help orient the user. It might ignore the semantic routines
and display the entire tree with boxes and arrows,
suppressing leaves and highlighting the current record.

string may be arbitrarily long, and sds provides
facilities like those of a conventional display editor
[Irons] that may be used to edit a string before enter-
ing it into the structure.

prompt: sect pp pp
command: .pp

tells sds to create a second paragraph and to drop
down to its text field.

prompt: sect pp pp text
command: This paper describes...

tells sds to enter a string there. At this point, the
command

prompt: sect pp pp pp
command: up

will format and display tha tparagraph,

prompt: sect pp pp
command: up

will format and display both paragraphs, and

19

prompt: sect pp
command: down

will return the first paragraph's text field, which sds
will display and open for editing with the same con-
ventional display editor that is available when typing
commands.

Note that, besides checking the document for syntactic
correctness as it is entered, sds guides the dialog with
prompts that suggest what is to be entered next. While the
dialog has been rather long, the user has typed only the
commands, which are no wordier than those typed to a
conventional document formatter [Ossanna, Reid]. In
fact, sds' representation of trees in permanent files closely
resembles the input to conventional document formatters.
The .r and .w commands read and write trees in a prefix
f o r m . . w writes the type of the node and then it recursively
writes each of the node's fields. For example, the docu-
ment created above would be written as

.paper
Syntax-Directed Editing
.sect
Introduction

.PP
Program editors help users...

.PP
This paper describes...

This approach to document formatt ing has both
advantages and disadvantages. On one hand, sds would be
hard put to handle complex typography. For example,
global problems like widow-suppression poorly fit the
context-free model, and one would want a different com-
mand syntax - - say, codes embedded in text, either typed
or entered via a menu [Ellis] - - for specifying frequent font
changes. However, sds is adequate for certain forms-
driven data entry and editing [Ellis] and for simple docu-

ments. For example, it would be easy to extend the gram-
mar above to create a business-letter editor that would
prompt for the various fields (e.g., address, salutation) and
assemble a properly-formatted letter from the responses.
Also, sds makes it fairly easy to adapt semantic routines so
that a document can be formatted in different ways to suit
different tastes [Reid]. Finally, while the hierarchical view
of documents is less conventional and thus less-understood
than the linear view, it is useful often enough (e.g., by
allowing one to insert, delete, and move whole sections as a
unit) that it deserves closer examination.

2.3 A Graphics Editor

A less conventional instance of sds edits simple line
drawings. Again, it uses the same driver as the editors
above, but its grammar differs:

pic = branch I co lor] move] scale] Iine~
branch= pic pic : put(pie) p u t (p i e 2)

color = newcolor pic : docolor(p ic,curcolor ,newcolor)
move = x y pic : dotr(pic,ta,tb,tc+x,td,te,tf+y)
scale = x y pic : dotr(pic,x*ta,x*tb,x*tc,y*td,y*te,y*tf)
line = points : d o l i n e (p o i n t s)

That is, a picture is a line or a command to color, scale, or
move a subpicture, branch does nothing - - it merely
allows two subpictures to inherit one set of attributes. The
semantic routines are docolor, dotr, and doline, docolor
calls sds' display rout ine to fo rma t a picture and surrounds
the result w i th cont ro l codes that switch f i rst in to co lor
newcolor and then back to old co lor curcolor, dotr adjusts
some g lobal variables - - ta-tf, which define a t ransforma-
t ion that dol ine applies to al l points before connecting
them w i th lines - - displays a subpicture, and restores the
or ig inal t ransformat ion. Code to ini t ia l ize the g lobal vari-
ables and to define docolor , dotr, and dol ine is appended to
this g rammar , and sds' preprocessor compiles the result
in to a list o f record declarat ions, a syntax checker, and a
display routine. The result ing edi tor makes it fa i r ly easy to
create and edit s imple pictures. For example, the com-
mand sequence

.branch

.color
red
. l ine

0,0 100,100
.color
blue
. l ine

0,100 100,0

draws a large 'X' with a red rising stroke and a blue falling
stroke, and

tNonterminals whose definitions use only alternation are
omitted from sds' parse trees to avoid clutter. According-
ly, productions involving only alternation have no seman-
tic action.

home
down
down
green

makes the red stroke green. Again, a written trace is a poor
substitute for a demonstration, because sds would have
been changing the display with each command to show the
path to, and contents of, the current record as it changes.

Because .pick copies pointers, not subtrees, it can
violate tree structure. Though this feature is dangerous,
users editing structures like the graphics structure may find
it handy. By picking a structure and putting it down in
several places, all instances of that structure may be
changed by changing the single copy. (Because this feature
is not universally desirable, it would be better ifsds offered
both copying and non-copying .pick commands). This
observation raises a larger issue: sds can be made to edit
arbitrary graph structures. Semantic actions for cyclic
structures would have to take care to avoid loops, and the
.r and .w commands would have to use a different encod-
ing, but sds does not otherwise assume that it is editing a
tree.

The graphics editor is incomplete. For example, it can
neither rotate pictures, clip them to fit the screen, nor
present objects other than lines (e.g., filled polygons,
curves). All of these features are easily added by extending
the grammar and code generation routines, but some
features resist this attack. For example, sds' command
language offers no way to enter coordinates by pointing
instead of by typing numbers, so this change would have to
be made to sds, not the grammar. A general solution to
this problem may be to have one grammar that defines the
structure and another that defines the command language.

3. Discuss ion

sds is written in SNOBOL4, though it could have been
implemented in a more conventional, compiled language
- - interpretation and garbage collection are handy but not
required. Its data-independent code is roughly 200 lines
long. The syntax descriptions (with semantic routines) for
the structures described above are 15-40 lines each, and
they are compiled into code roughly 2-3 times that length.
An editor like the binary-tree editor can be brought up in
about an hour by someone familiar with sds. The semantic
actions require most of the effort. Once they are finalized,
the editor may be changed quickly. For example, when
writing this paper it became obvious that it would be easier
to describe Section 2.2's document structure than the origi-
nal one:

paper = t i t le sects : center (t i t l e) nl nl put (sec ts)

sects = sect sects : put(sect) put(sects)
sect = h e a d e r pps : header nl nl put(pps)
pps = pp pps : put(pp) put(pps)
pp = text : b reak (tex t) nl

While this change resulted in changes to many lines of
(generated) code, the ability to change only the syntax

20

description allowed it to be completed in five minutes.

scls is loaded with several short SNOBOL4 routines
that handle the terminal interface. Thus text-based editors
like the document and C editors run on several models of
terminals, though the tree and graphics editors run on only
one model because their semantic actions assume that
model's control sequences.

st:Is is experimental. It still needs thorough testing,
optimization, and documentation, and many aspects need
polishing. For example, sds' cavalier screen refreshing
would be tedious were communications slow; it would be
better to display more context than just the current record
and then indicate the current record by highlighting it or by
pointing the cursor at it. While the user interface needs
work, more complete versions of the document and graph-
ics editors, and attacks on new data structures, are likely to
produce more interesting results.

University of Washington, October 1980.

T. Teitelbaum. The Cornell program synthesizer: A
tutorial introduction. Technical report 79-381, Depart-
ment of Computer Science, Cornell, 1980.

A. van Dam and D. Rice. On-line text editing: A survey.
A CM Computing Surveys 3(3):93-114, September 1971.

Acknowledgment

This work has benefited greatly from discussions with
Dave Hanson.

References

G. Coulouris et al. The design and implementation of an
interactive document editor. S o , ware - - Practice and
Experience 6(2):271-279, April 1976.

C. Ellis and G. Nutt. Office information systems and com-
puter science. ACM Computing Surveys 12(1):27-60,
March 1980.

C. Fraser. A generalized text editor. Communications of
the ACM23(3): 154-158, March 1980.

C. Fraser and A. Lopez. Editing data structures. To
appear in A CM Transactions on Programming Languages
and Systems.

E. Irons and F. Djorup. A CRT editing system. Commun-
ications of the A CM 15(1): 16-20, January 1972.

S. Johnson. YACC - - yet another compiler-compiler.
Technical report, Bell Labs, Murray Hill, N J, 1975.

B. Kernighan and D. Ritchie. The C programming
Language. Prentice-Hall, 1978.

J. Ossanna. Troff user's manual. Technical report, Bell
Labs, Murray Hill, N J, 1977.

B. Reid. A high-level approach to computer document for-
matting. Conference Record of the Seventh Annual ACM
S.vmposium on Principles of Programming Languages:24-
31, January, 1980.

E. Sandewall. Programming in the interactive environ-
ment: The LISP experience. ACM Computing Surveys
10(1):35-71, March 1978.

A. Shaw. A model for document preparation systems.
Technical report 80-04-02, Department of Computer Sci-
ence, University of Washington, April 1980.

A. Shaw, R. Furuta, and J. Scofield. Document format-
ting systems: Survey, concepts, and issues. Technical
report 80-10-02, Department of Computer Science,

21

