
A KNOWLEDGE-BASED CODE GENERATOR GENERATOR 

Christopher W. Fraser % 
Department of Computer Science 

Yale University 
New Haven, CT 06520 

XGEN is a program that accepts a machine description and produces a good local code generator 
for an ALGOL-like language. It is organized as a production system of rules codifying previ- 
ously acquired human skills for dealing with computer architecture and programming ~anguages. 

i. INTRODUCTION 

The proliferation of machines and programming lan- 
guages motivates automatic generation of compilers. 
Automatic generation of some compiler modules is 
already available; for example, parsers may be 
generated from syntax specifications. Automatic 
generation of some others is moot; for example, 
much global optimization is largely independent of 
both language [8] and machine [12]. However, the 
machine-dependent modules, particularly the local 
code generator, have resisted automation. The im- 
mediate goal of this research is a working program 
that derives a good local code generator for an 
ALGOL-like language (e.g., ALGOL, FORTRAN, PASCAL) 
from a simple, general machine description. The 
program is called XGEN. 

Writing a program requires a thorough understand- 
ing of the problem at hand. So writing a program 
to write code generators requires a detailed un- 
derstanding of the impact of computer architec- 
ture on languages and compilers. The larger goal 
of Yale's "automatic generation of ..." series 
(see also Wick's Automatic Generation of Assem- 
blers I14]) is this understanding of common pro- 
grammlng tasks as a step toward more general auto- 
matic programming. Since it will influence our 
choice of techniques, a discussion of our view of 
automatic programming is germane. 

Automatic programming is getting programs to do 
what programmers do. Programmers define, write, 
optimize, verify, and document programs, drawing 
from a large base of progra~mning skills or canned 
solutions. They also use more general problem- 
solving abilities, but Just as skill sets program- 
mers apart from other human problem-solvers, so 
skill sets automatic programming ~part from more 
general artificial intelligence. Automatic pro- 
gra~ming research codifies this skill. 

We proceed from programming tasks that are well- 
understood and worth automating. Assemblers and 
simple local~code generators are obvious candi- 

This work was supported by an IBM Graduate 
Fellowship. 

% 
Present address: Department of Computer Science, 
The University of Arizona, Tucson, AZ 85721. 

dates. We'll understand them no better in five 
years; now is as good a time as any to seek auto- 
mation. We define them, circumscribing the class 
of programs that assemble or generate code. Then 
we study, for these examples, machines, isolating 
the parameters that define a member of the class. 
Then we write programs to deduce these parameters 
from machine descriptions. 

2. ORGANIZATION 

Much past automatic programming research has em- 
phasized abstract problem-solving over world know- 
ledge about programming. For example, theorem- 
proving systems extract programs from proofs of 
output assertions [9]. Means-end analysis recur- 
sively chooses the operator (defined by its state 
changes) that most closely achieves the specified 
goal state [10, 13]. Such approaches, though ele- 
gant and general, do not meet our needs for an 
automatic programming system restricted to code 
generators. Their elegance, plain when dealing 
with abstract LISP additions and integers, is lost 
on the ad hoc domain of real machines with finite 
data representations and add instructions with 
slde-effects on the program counter and status 
bits. Their generality forces them to resort to 
unacceptably slow exponential searches and to as- 
sume so little that the description of a code gen- 
erator may be quite verbose. Finally, they tell 
us little about programming: human programmers do 
not write programs by proving theorems. 

Instead of abstract problem solving, XGEN empha- 
sizes specific assembly language programming 
skills that humans apply daily. XGEN is a produc- 
tion system, successively applying rules that en- 
code bits of this knowledge. These rules specify, 
for example, that a conditional jump may be imple- 
mented with a sklp/Jump, that a loop may be mas- 
saged to use a subtract-index-and-test instruc- 
tion, and that a memory structure 8 bits wide is 
probabl~ for characters. A rule may not apply to 
all machines, but it usually applies to several. 

This organization has its strengths and limita- 
tions. It is easy to understand what XGEN does 
with its input. It is easy to enhance XGEN to re- 
cognize new architectures, to compile new language 
constructs and to interface with new automatic 
progrs/mning systems. It is hard, though, to anti- 

126 

cwfraser
Note
© ACM, 1977. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the ACM SIGPLAN/SIGART Symposium on Artificial Intelligence and Programming Languages.



cipate enough about coming needs to finalize XGEN; 
like the human programmer, XGEN may sometimes need 
new rules (entered by hand) for new architectures 
or languages. It is easy to generate good code by 
case analysis. It is hard, though, to guarantee 
optimal code, since XGEN proceeds from a base of 
programming "tricks" rather than an abstractno- 
tion of the problem and its complexity. This or- 
ganization was chosen for its utility; the theo- 
retical limitations cause few problems in prac- 
tice. It is useful for higher-level programming, 
floo; the PSI automatic programming system uses 
similar techniques to code symbol manipulation 
programs [5]. 

XGEN addresses only machine-dependent problems. 
It ignores code generation phases that require no 
machine analysis. Automatic generation of these 
is redundant. For example, XGEN ignores most glo- 
bal optimizations (e.g., constant propagation, 
strength reduction), which depend little on the 
source language [8] or target machine 212]. XGEN 
also ignores global register allocation, which re- 
quires few more machine-dependent parameters than 
the XGEN-supplied number and types of registers 
available 12]. XGEN i_~sresponsible for local reg- 
ister allocation, smoothing instruction set asym- 
metries. 

3. THE MACHINE DESCRIPTIONS 

An automatic programming system requires a rigor- 
ous machine description. Use of Bell and Newell's 
ISP machine description language [3] guarantees 
wide application and builds on previous work [14]. 
An ISP description is just a program defining 
the machine's instruction interpreter. For exam- 
ple, an IBM 360 ISP contains declarations for the 
machine's registers and memory (viewed as 8, 16 
and 32 bits wide, with alignment constraints): 

R [0:15]<0:31> 

MI[0:262143] <0:7> 
M2[0:262142:2]<0:15> := MI[0:262143]<0:7> 
M4[0:262140:4]<0:31> := MI[0:262143]<0:7>. 

Short programs define the machine's operation. 
For example, the IBM 360 indexes when the X2 in- 
struction field is nonzero; otherwise, the indexed 
address is just the base-displacement address: 

RX :: (X2 eq 0 => BD; X2 n__ee 0 => R[X2] + BD). 

Programs also define such often-used ISP "macros" 
as condition-code setting: 

CCA(X) :: ( 
X eq 0 => 0 ~ CC; 
X it 0 => 1 + CC; 
X gt 0 :> 2 + CC). 

Finally, programs define the instructions. The 
IBM 360 Load instruction (opcode 88) loads the 
fullword indicated by the indexed address calcu- 
lation into the register indicated by the instruc- 
tion field RI: 

'L' (:= OP eq 88) :> M4[RX] ÷ R[RI]. 

At the level of detail required for code genera- 
tion, ISPs are typically a page or two and may be 
produced in a few hours by someone experienced 
with the machine. 

XGEN ignores those exotic machine features rarely 
understood by code generators (e.g., virtual mem- 
ory, timers, I/0, interrupts). XGEN also assumes 

a pleasant, idiomatic ISP: adds must be expressed 
with the add operator, not with primitive bit man- 
ipulation and not by counting one operand up while 
counting the other down to zero. The special case 
of recognizing equivalent additions is, at best, 
unpleasant; the general case of recognizing equi- 
valent ISP programs is undecidable. Human pro- 
grammers aren't asked to recognize such equiva- 
lences; the Principles of Operation manual [7] 
gives them a pleasant machine description. ISP 
should give their automatic counterparts the same. 

4. THE LANGUAGE COMPILED 

XGEN produces good local code generators. They 
compile XL, a language of tuples suited to des- 
cribing local behavior. Parse trees and Polish 
strings must be broken down, one operation per 
tuple. XL resembles other languages for code gen- 
eration (see Gries' triples and quadruples [6]). 

To guarantee flexibility and to focus on just the 
machine-dependent issues, XL is as low-level as is 
possible without interfering with the goal of por- 
table, efficient programs. For example, XL has 
only static variables; dynamic allocation must be 
built from such XL primitives as stack operations. 
XL resembles, and may be used as, a high-level 
machine-independent assembly language. 

XL operations include moves, combinatorics (mona- 
dic and dyadic), jumps (conditional and uncondi- 
tional), loops, calls and returns. XL datatypes 
are integer, character and pointer variables, reg- 
isters, constants, vectors, strings and stacks. 
XL references may be by address, by value, indi- 
rect, subscripted or one of several more complex 
pointer references. 

The flavor of XL is given by the program below 
that finds the maximal element of a vector: 

mem int m 0 ;max found so far, initially 0. 
vec int a i0 ;vector to be scanned, i0 long. 

;a[0] = n = actual vector length. 
a[a[0]] ÷ m ;max found so far is last element. 

reg ptr k ;declare 10o p index. 
for k ÷ a[O]-i to i by -i ;k ÷ n-l, n-2 .... i. 

a[k] l e m => jump tl ;le => cycle. 
a[k] ~ m ;gt => update max. 
tl: end ; end of loop. 

Some XL constructs may seem rather high-level. 
For example, XL expresses loops as primitive op- 
erations, collecting the direction and the start, 
step and stop values rather than scattering them 
over many'tuples, as some code generation lan- 
guages require. Such "large" primitives are used 
only when this additional context simplifies the 
generation of "large" instructions, in this case, 
subtract-index-and-test instructions. 

5. USING XGEN 

To generate a code generator, we first invoke 
Wick's assembler generator [14], producing a basic, 
conventiOnal assembler and syntactically simpler 
ISP. This is presented to XGEN, which does some 
analysis immediately. Registers are classified as 
accumulators and index registers. Memories (e.g., 
MI, M2 and M4 above) are analyzed to determine 
width and alignment for the various datatypes. 
Instructions are classified according to type 
(e.g., move, jump). ISP macros representing com- 
mon idioms are so classified (e.g., setting the 

127 



condition code, stacking operands). 

This instantlated version of XGEN is saved as a 
code generator. The code generator currently gen- 
erated is interpreted, not compiled, in ~he sense 
that code generation still invokes ISP analysis. 
This is a matter of convenience, not necessity; 
all ISP queries could be made when the ISP is 
loaded with a simple but tedious series of 
changes to XGEN. 

This specialized XGEN now accepts XL statements. 
If it finds an instruction implementing the op- 
eration, it returns the associated assembly lan- 
guage code. Otherwise, it tries rules until one 
succeeds, typically decomposing the XL into two 
simpler operations. XGEN iterates, compiling 
these. This is best understood by watching XGEN 
in action. Consider the compilation of IBM 360 
code for this fragment of the XL program above: 

mem int m 0 
vec int a i0 
re$ ptr k 

a[k] le m => Jump tl. 

To process the declarations, XGEN must learn the 
width and alignment for integers and the names of 
the index registers; the assembler handles encod- 
ing. Among the rules (translated from LISP to Eng- 
lish for this presentation) applied to each ISP 
variable X are: 

If X is the widest memory overlay for which 
{? + X[?] + ?} matches some instruction then 
X is the integer memory. (? indicates that 
XGEN doesn't care what appears in that position). 

If {M[X+?] ÷ ?} matches some instruction 
for some memory M then X is an index reg- 
ister. 

The first rule selects M4 as the integer memory; 
its width and alignment define the integer stor- 
age format. Substituting this machine-dependent 
data into general templates gives this compila- 
tion for the declarations: 

alisn 4; m: field <32> 0; 
align 4; a: ors .+40. 

The second rule classifies R[I:I5] as index reg- 
isters. Declaring k an index register picks one 
of these (say, R[3]), marks it busy and equates 
it with k. No code is generated. 

XGEN begins compiling the conditional branch by 
rewriting it as if in the IBM 360 ISP: R[3] must 
be substituted for k, multiplied by 4 (perhaps by 
shifting), added to the vector's base address and 
used to index the integer memory, M4; the jump 
must be replaced by an assignment to the ISP vari- 
able tagged as the program counter by the assem- 
bler generator: 

M4[a + R[3] shift 2] le M4[m] => tl + PC. 

XGEN first applies rules that simplify subscript 
calculations: 

If compiling some operation with a sub- 
scripted operand that is not in an index 
register then allocate one, load it with 
the subscript and change the original 
operation to reference it. 

So XGEN allocates another index register (say, 
R[43) and produces: 

R[3] shift 2 + R[4] 
M4[a+R[4]] le M4[m] => tl + PC. 

Subscripting simplified, XGEN applies rules tai- 
lored to the input tuple's operation class. These 
rules describe common hardware realizations of, 
for example, binary combinatorials and conditional 
jumps. The rules that apply to our example are: 

If compiling {x shift y ÷ z}, and z speci- 
fies an accumulator different from x then 
compile {x ÷ z next z shift y ÷ z}. (The 
rule actually transforms all binary com- 
binatorial operators, not Just shift. 
"Next" denotes sequential, as opposed to 
parallel, execution.) 

If compiling {x l e y => 1 + PC}, and the 
machine uses a condition code (CC) then 
compile {SET-CC(x-y) next LE-MASK[CC] => 
1 ÷ PC}. (When the ISP was loaded, XGEN 
recognized the routine that sets the con- 
dition code, defining the name "SET-CC" 
and the mask "LE-MASK." The rule actually 
transforms all relatlonals, not just l e.) 

The two lines expand to four: 

R[3] ÷ R[4] 
R[4] shift 2 ÷ R[4] 
CCA(M4[a+R[4]]-M4[m]) 
II00[CC] => tl + PC. 

Only the third isn't an IBM 360 instruction. It is 
expanded by one of XGEN's last rules, which loads 
and stores registers to conform to the require- 
ments of the instructions chosen above. The appli- 
cable rule is: 

If compiling some operation with an operand 
that is not in an accumulator and if the 
operation otherwise matches some instruction 
then allocate an accumulator, load it with 
the operand and change the original operation 
to reference it. 

XGEN allocates an accumulator (say, R[5]) and the 
program becomes, finally: 

R[3] ÷ R[4] 
R[4] shift 2 + R[4] 
M4[a+R 4--~]] + R[5] 
CCA(R[5]-M4[m]) 
II00[CC] => tl ÷ PC. 

This compiles into: 

LR 4,3 
SLA 4,2 
L 5,a(4) 
C 5,m 
BC ll00,tl. 

6. PERFORMANCE 

XGEN must be evaluated along several different di- 
mensions. First, how good is the generated code? 
The example above is typical. Locally, the code 
was optimal; XGEN did as well as possible with the 
original input tuple. Even global performance, 
not entirely XGEN's responsibility, is good. The 
entire program compiles into 18 instructions; with 
global (i.e., inter-tuple) register allocation, 
14. To do better, we must go beyond the scope of 
traditional compilers and change the algorithm 
slightly to get an apparently optimal 12 instruc- 
tions. Metrics other than instruction counts 
yield similar comparisons. Good, but not always 

128 



optimal, code is typical. 

How much effort goes into generating a code gener- 
ator? XGEN has completed code generators for 
Perlis' pedagogical AJP21A [ii], the PDPI0 and the 
IBM 360. XGEN's rule base grew as follows: 

AJP21A 30 rules 4 man-months 
PDPI0 +i0 rules +4 man-weeks 
IBM360 + 5 rules +i0 man-days. 

This convergence was predicted by the arguments 
for knowledge-based code generator generation, and 
borne out by the example above: only the "condi~ 
tion code" rule applies to the IBM 360 and not 
the FDPI0 and the AJP21A. The convergence is by 
no means absolute. The present rule base suf- 
fices for simplep conventional machines. Ma- 
chines with a few characteristics new to XGEN 
(e.g., microprocessors, the PDPII, the CDC 6000 
series) might require five new rules apiece. Exo- 
tic architectures (e.g., the CDC STAR) would de- 
feat many existing rules and require substantial 
effort; indeed, XL and ISP, unenhanced, are un- 
suitable for programming and describing such ma- 
chines. 

How much does it cost to run XGEN? This experi- 
mental XGEN was developed in LISP, runs in 55K 
words on a PDPI0 KAI0 and generates a line of as- 
sambly code each second, A production version 
eliminating the current multi~level interpretation 
would require substantially less time and space. 
XGEN can be made practical. 

7. UNDERSTANDING CODE GENERATION 

The knowledge gained when automating a process is 
usually more detailed than profound. XGEN's con- 
tributions to our understanding of code generation 
are no exception. Ignoring them, however, is ig- 
noring the experience that "the quality of the 
local code has a greater impact on both the size 
and speed of the final program than any other 
optimization" I15]. They take the form of many 
little hints about languages and machines: 
strings should be distinguished from character 
vectors (sequential versus random access) to sug- 
gest the storage format on word-addressed ma- 
chines (packed versus unpacked); integers should 
be declared with ranges to permit small ones to 
be stored as halfwords on the IBM 360 and as 8- 
bit bytes on microprocessors. Most are too 
complex to present here [4]. Taken one at a time, 
they each seem obvious, trivial observations. 
Taken together, they define what code generators 
must know about programs and machines to produce 
good code. 

8. SUMMARY 

XGEN is a useful tool. It contributes to our 
understanding of code generation, demonstrates 
the viability of knowledge-based code generator 
generation and encourages knowledge-based auto- 
matic programming. Work in progress includes en- 
hancements for new architectures and languages, 
as well as the incorporation of XGEN in a larger 
compiler generator. 

ACKNOWLEDGEMENTS 

Alan Perlis guided this dissertation research. 
David Hanson suggested several improvements to 
this paper. 

REFERENCES 

i] F. E. Allen and J. Cocke. 
A catalogue of optimizing transformations. 
In R. Rustin, editor, 

Design and Optimization of Compilers, 1-30. 
Prentice-Hall, 1972. 

2] J. Beatty. 
A register assignment algorithm for the 

generation of highly optimized object code. 
IBM Journal of Research and Development 18(1): 

20-39, January 1974. 

3] C. G. Bell and A. Newell. 
Computer Structures: Reading8 and Examples. 
McGraw-Hill, 1971. 

4] C. W. Fraser. 
Automatic Generation of Code Generators. 
Ph.D. dissertation, Yale University, in 

preparation, 1977. 

5] C. Green. 
The design of the PSI program synthesis 

system. 
In Proceedings of the 2nd International 

Conference on Software Engineering, 
October 1976. 

6] D. Gries. 
Compiler Construction for Digital Computers. 
Wiley, 1971. 

7] IBM. 
IBM System~360 Principles of Operation. 
IBM, 1968. 

8] E. S. Lowry and C. W. Medlock. 
Object code optimization. 
CACM 12(1):13-22, January 1969. 

9] Z. Manna and R. J. Waldinger. 
Toward automatic program synthesis. 
CACM 14(3):151-165, March 1971. 

i0] J.M. Newcomer. 
Machine-Independent Generation of Optimal 

Local Code. 
Ph.D. thesis, Carnegie-Mellon University, 

May 1975. 

ii] A. J. Perlis. 
Introduction to Computer Science. 
Preliminary edition, Harper and Row, 1972. 

12] P. B. Schneck and E. Angel. 
A FORTRAN to FORTRAN optimising compiler. 
Computer Journal 16(4):322-330, November 73. 

13] H. A. Simon. 
Experiments with a heuristic compiler. 
JACM 10(4):493-506, October 1963. 

14] J. D. Wick. 
Automatic Generation of Assemblers. 
Ph.D. dissertation, Yale University, December 

1975. 

15] W. Wulf, R. K. Johnsson, C. B. Weinstock, 
S. O. Hobbs and C. M. Geschke. 

The Design of the Optimizing Compiler. 
American Elsevier, 1975. 

129 




