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Text is not the only data that needs editing; for 
example, file deletion utilities edit directories. If all 
"editors" used the same command language, they would 
be easier to learn, remember, and code. This paper 
describes a generalized editor that edits text, 
directories, binary core images, and certain operating 
system data with a single user interface. 
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I. Introduction 

Editing means examining and modifying data. 
Though most editing programs edit text, other types of  
data need editing too: Utilities that delete and rename 
files edit directories and interactive debuggers edit binary 
core images. Typically, each utility has its own command 
language and command scanner. However, each of these 
utilities is just an "editor" and, with careful design, might 
share the system text editor's command language and 
scanner. Duplicating command scanners wastes pro- 
gramming effort. Duplicating command languages frus- 
trates users, especially naive users: More than one typist 
has abandoned computing over poor user interfaces. As 
computers proliferate, more naive users must be accom- 
modated; hence the growth of interest in improving 
command languages [3, 10]. 
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This paper  describes the generalized text editor s. s 
offers commands like those of  a conventional text editor, 
but, by changing a few lines of  code, it can edit nontex- 
tual data with the same user interface. Instances of  s edit 
text, directories, binary data, and the internal state of  a 
computer. They affect nontext like a conventional editor 
affects text. Where a conventional editor presents text 
from a file, s presents the textual representation of  non- 
text (utilities routinely present as text such nontext as 
directories and core images). Where a conventional edi- 
tor changes a file to reflect changes requested by the 
user, s changes the underlying nontext to reflect similar 
user changes to its textual representation. As such, s 
offers a "canned" user interface for editor-like utilities. 
It has been retrofitted to existing utilities, it has simplified 
the implementation of new ones, and it promotes local 
standardization of user interfaces. 

Section 2 shows how s is used to edit text, file system 
directories, machine states, and binary data. Section 3 
describes its implementation. 

2. Example Editors 

2.1 A Text Editor 
s is a generalized CRT-based editor based on the 

Yale editor e [4]. It is best introduced by considering the 
instance of  s that edits text. It displays a two-dimensional 
window on a text file and allows the user to change it by 
moving a cursor about the screen with the terminal 's 
cursor control keys and typing new characters over the 
old ones. It changes the data being edited to reflect the 
user's changes to the screen: The screen always displays 
the current version of the edited data. Special function 
keys--dedicated keys on some terminals, control char- 
acters on others-- invoke special functions. For example, 
+pages displays the next page (screen) of  the file. All 
special functions accept an optional argument: 

escape 2 +pages 

advances the screen's window on the file by two pages. 
-pages moves back; +lines and -lines move by so many  
lines, not pages; +search and -search move to the next 
occurrence of  text matching their argument, a pattern 
given as a regular expression. All special functions re- 
member  and reuse their arguments: 

escape abc +search +search 

finds the first and then the second occurrence of  "abc". 
delete deletes the line on which cursor resides (from the 
cursor on); if its argument is a number  n, it deletes n 
lines; if its argument is a cursor movement  (i.e., only 
cursor control keys were struck between escape and 
delete), it deletes the characters and lines between the 
initial and final cursor positions and so may be used to 
delete part of  a line and to join lines, delete remembers 
what it deletes; a subsequent put inserts the last-deleted 
data at the current cursor position and so may be used 
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to move data; if  given an argument, put puts it instead 
and so may be used to insert new text. pick remembers 
what delete does but deletes nothing; it may be used to 
duplicate text. insert inserts as much (blank) space as 
delete deletes, start starts editing another file, named by 
its argument, stop terminates an editing session. This is 
s's complete user interface; all instances of  s use it, 
including those that edit nontextual data. 

2.2 A Machine-State Editor 
Some instructors at the University of  Arizona intro- 

duce assembly language programming by having the 
students program a simplified, pedagogical machine. 
This machine has an accumulator, a program counter, 
20 words of  memory,  and an instruction format simple 
enough to program absolutely: a one-digit opcode and a 
two-digit address (e.g., the opcode for load is 6, so 
instruction 620 loads the last memory  cell into the ac- 
cumulator). Until recently, students programmed in 
batch: They prepared cards that gave an initial machine 
state and received a printed trace of  the resulting states. 
Using the generalized text editor as a canned front end, 
an interactive simulator was coded in an hour. The editor 
displays the state of  the machine, which, initially, is 

ac = 0  

pc = 0 

mill = 0 
m[21 = 0 

m[201 = 0 

The student creates a program by editing this. For ex- 
ample, overstriking can yield the state 

ac = 0  

p c =  1 

mill = 620 
m[2] = 0 

m[20] = 17 

which points the pc at a load ("620") followed by a halt 
("0"). m[20] holds the value to be loaded. The student 
presses start to execute the program. The editor executes 
until it encounters the halt in m[2] and then displays the 
new machine state 

ac = 17 

pc = 3 

m[ l ]  = 620 

m[2] = 0 

m[20] = 17 

The accumulator has been loaded with 17 and the pro- 
gram counter points after the halt. The student may 
continue by editing this machine state or quit by pressing 
stop. This simulator was much easier to code than the 
batch version, and if the student knows the text editor, 
the simulator may be used without special training. 
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2.3 A Directory Editor 
The directory editor presents a file system directory 

just as the operating system's (in this case, UNIX 1) 
standard directory listing utility does. For the reader new 
to UNIX, a short directory might appear as 

-rwxrwxrwx 1 cwf 1738 Feb 11 18:55 abc 
d r w x r - x r - x  1 cwf 624 Jan 3 6 :45def  

The first character tells whether the file is itself a direc- 
tory: file abc is not, file def  is. The next nine give the 
read, write, and execute permissions for the file's owner, 
his project group, and all other users, respectively: Any- 
one can do anything to abc, but only the owner can 
change def. The last five fields ~ give the number of  file 
system pointers to the file ("1"), its owner ("cwf"), its 
length ("1738"), its creation date ("Feb 11 18:55"), and 
its name ("abc"). 

The directory may now be changed by editing this 
text. Deleting the first line deletes file abc. Deleting the 
"b" from the same line changes its name to "ac". Over- 
striking the "cwf" changes its owner. Overstriking the 
permission flags changes them. Overstriking the length 
field does nothing: Changes are made only if they make 
sense and the user's access privileges permit them. start 
displays another directory or directory fragment accord- 
ing to UNIX convention. For example, the conventional 
UNIX commands 

Is 
Is *.c 

respectively list the user's entire directory (null argu- 
ment) and just those files whose names end in ".c" 
("*.c" argument). Analogously, the directory editor's 
commands 

escape start 
escape *.c start 

edit what the ls commands above displayed. All in all, 
the directory editor subsumes five different UNIX com- 
mands, which account for 16 percent of  all command 
accesses. 

2.4 A Binary Disk Editor 
Binary patches to a disk are sometimes necessary. 

For example, when a physical disk block goes bad, it is 
usually removed from the file it represents and added to 
a file of  "dead" blocks that will never be referenced. 
Under UNIX, a system expert usually does this by hand, 
with a utility that can present and change arbitrary, 
uninterpreted words on the disk. Because the job is so 
delicate, it would help if the file descriptors, called 
"inodes" [8], were displayed in a more natural form. This 
is where s is useful. 

An inode is a fixed-length record of  18 fields: Some 
are flags, best shown in octal; others are disk addresses, 
best shown in decimal; still others are best suppressed. 

UNIX is a t rademark of Bell Laboratories. 
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Using the generalized editor, an inode editor has been 
built that presents a device's inodes, one per line with 
each field in its natural format. Overstriking, the expert 
removes the address of  the bad block from the user's 
inode and then adds that address to the "dead" inode. 

Though it plays a special role, the inode list resembles 
many conventional databases: It is a list of  records. So 
the inode editor is easily adapted to other similar data- 
bases: The user need only change the structure declara- 
tion and the routines that convert between the internal 
and display formats. 

3. Organization 

Changing a file name differs from changing an inode, 
even though a generalized editor makes the processes 
look the same. Different data types require slightly dif- 
ferent editors: With so many types of  data to edit, 
construction of  editors must be made easy. This suggests 
separating the editor into a data-independent, front-end 
display manager that calls on a set of  editing primitives 
that actually edit data. Implementing an editor for a new 
data type means implementing a new set of  primitive 
subroutines. The next three sections describe issues that 
bear on the choice of  a user interface, of  a set of  editing 
primitives, and of an implementation strategy. 

3.1 The User Interface 
To the user, a generalized text editor looks like a 

conventional text editor. Many user interfaces are pos- 
sible for a text editor, so many are possible for a gener- 
alized editor; however, a generalized text editor modeled 
after a line editor inherits certain problems. Why? The 
user of  a line editor indicates target text by giving a line 
number or a pattern that the target must match. If  none 
is given, the editor may assume a default line number 
(perhaps the last line addressed), but the user is often 
forced to give an explicit address. For example, to delete 
the next line containing "editor" using UNIX's  text 
editor ed [5], the user would type 

/edi tor /d  

A directory editor modeled after such a line editor would 
use the same command to delete a file named "editor", 
instead of  using the standard UNIX file deletion utility 
rm: 

rm editor 

The generalized editor excuses users from learning the 
syntax of this command (and the others that edit direc- 
tories) but offers the user little more than a certain 
elegance of having all editing operations use the same 
syntax: Both commands require typing the name plus 
three characters of  overhead. To delete the same line 
with a screen editor, the user merely holds down a cursor 
control key until the cursor is positioned on the line 
containing "editor" (many CRTs have repeating cursor 
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control keys) and then presses a delete key. The number 
of characters of overhead is about the same--one cursor 
control key, a pause until the cursor is in position, and 
delete--but the name need not be typed. Even more 
typing is saved if the user needs to check the directory 
before or after editing. With a typical operating system, 
or with a generalized line editor, listing the directory 
requires another command; with a generalized screen 
editor, which always displays a screen full of  the current 
version of  the data being edited, the directory is already 
visible (at least partly) and so need not be listed explicitly. 
It was to save such typing that a screen editor interface--  
rather than a line editor interface--was built on s's 
editing primitives. 

3.2 The Editing Primitives 
s's editing primitives are a set of  subroutines that edit 

a collection of vectors of lines or, more precisely, arbi- 
trary nodes represented as lines of  text. A screen editor 
may be constructed for any data that may be viewed in 
this way; some data structures do not oblige, but as the 
examples of Section 2 indicate, many do. The primitive 
subroutines edit lines, not characters, for good reason: 
To change a file's name from "abc" to "def ' ,  the user 
will first overstrike the "a", then the "b", then the "c", 
giving the trace 

abc 
dbc 
dec 
def 

Clearly, this requests one rename operation, not three, 
so the front-end screen editor handles intra-line editing 
internally and sends requests to change lines (of text, 
directories, etc.) only when the user moves the cursor to 
another line or executes a special function. 

The primitives are: 

fetch(int: n; string: 1) 
change(int: n; string: 1) 
insert(int: n; string: I) 
delete(int: n) 
search(int: n; string: 1) 
open(string: f) 
close( ) 
init( ) 
stop( ) 

fetch node n into 1 
change node n to 1 
insert 1 after node  n 
delete node  n 
search from node n on for s 
edit structure f 
stop edit o f  las t-opened structure 
initialize primitives 
terminate  primitives 

The screen editor front end translates screen editor com- 
mands into calls on these primitives. For example, it 
translates overstrikes into calls on fetch (to retrieve what 
is there) and change (to record the overstrike). It trans- 
lates the screen editor delete command into calls on the 
delete primitive (one for each line deleted) and on change 
(in case just part of  a line is deleted). 

This set of primitives is more than enough to imple- 
ment s's commands. The search primitive is not strictly 
necessary--in the directory editor, it is implemented with 
calls on the fetch primitive and a string matching rou- 
t i n e - b u t  performance is sometimes improved by allow- 
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ing for the use of  another algorithm (see the next section). 
The change primitive is strictly necessary: perhaps not 
for text where delete/insert does as well, but certainly 
for directories where a change (i.e., a rename) is not a 
deletion followed by an insertion. For some editors, some 
primitives have no effect; for example, one cannot insert 
or delete a word in memory, so the machine-state editor 
does not implement insert or delete. 

3.3 Implementing the Editing Primitives 
The most natural implementation of the editing prim- 

itives is as a closed set of  subroutines that actually edit 
data. For example, the machine-state editor maintains 
variables that simulate the machine's accumulator, pro- 
gram counter, and memory: init initializes them, fetch 
retrieves and formats their values, change changes them, 
and open simulates the machine-language program that 
starts at rn[pc]. Similarly, the inode editor actually 
fetches and changes inodes (if the user has the proper 
privileges), and one version of  the text editor borrowed 
its primitives from a previously existing line editor. 

When a generalized editor is being interfaced to an 
existing utility, another strategy is available: The primi- 
tives may command the existing utility to do their editing 
for them. For example, the first set of primitives for the 
text editor created a slave line editor process and com- 
manded it to fetch and change lines from text files [2] 
(here the search primitive tells the line editor to do the 
searching, avoiding repeated fetches). Similarly, the di- 
rectory editor's primitives create a slave command inter- 
preter and send it conventional, user-level commands to 
delete and rename files. Perhaps surprisingly, if the 
primitives avoid asking the slave for data available lo- 
cally, the slave-process editors run almost as fast as their 
single-process counterparts. Furthermore, slave-process 
editors are often the easier to implement, especially when 
it is hard to borrow code from the slave for a single- 
process version; in fact, to ensure file system integrity, 
an operating system may prevent a directory editor from 
deleting files itself, forcing a slave-process design. On the 
other hand, slave processes do complicate error detec- 
tion. Suppose the directory editor is asked to delete a 
protected file. The delete primitive's slave may print a 
(possibly cryptic) error message, but it may not have 
been designed to notify its parent process of  the error. 
Since the front end cannot know whether anything was 
deleted, it must refresh the screen from scratch: It cannot 
rely on local data already on the screen. 

A variant of  the slave-process scheme that is occa- 
sionally useful accumulates slave commands in a file 
instead of  sending them directly to a slave process. For 
example, a directory editor might operate on a textual 
copy of a directory and accumulate a file of  commands 
that - -when executed later--will  change the actual direc- 
tory as requested. Delaying the actual editing precludes 
error checking entirely, but it does result in a directory 
editor that exploits existing utilities without using more 
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than one process at a time (a restriction imposed by 
many operating systems), and that allows the user to 
back out of a bungled editing session without changing 
the directory. 

The increasing availability of programmable termi- 
nals presents a final variant of the slave-process scheme. 
The front end (including the primitives) can run on some 
intelligent terminals, presenting commands to, and inter- 
preting responses from, a slave running on a larger host 
computer. The host need not support multiple processes 
per user because multiple processors realize the multi- 
processing. Experience with such an arrangement may 
suggest changes to s; for example, the front end might 
retain several screenfuls locally--and even prefetch data 
when the connection to the host is free--to reduce com- 
munication delays. Other documents expand on this 
design [2]. 

4. Implementation 

s extends a previously written screen editor that was 
a front end to a line editor, and only a line editor [2]. It 
is a 300-line program written in the language C [6] and 
runs on a PDP-11/70 under UNIX at the University of 
Arizona. Available editing primitives edit text files, di- 
rectories, inodes, the state of a pedagogical machine, the 
date and time, and other data; they are 42 to 94 lines 
long. It took one person two weeks to construct the first 
directory editor; it took one to eight hours to construct 
each of the others. For its improvements to the various 
command languages, the generalized editor adds about 
8,000 bytes in memory requirements and a CPU over- 
head that is imperceptible but otherwise unquantifia- 
ble--it  depends so on the editing session. This particular 
implementation optimized development time; processor 
utilization could be improved was there a need to do so. 
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5. Discussion 

The generalized text editor primitives embody a sim- 
ple theory of editing that offers, at least for such simple 
data structures as lists (of text lines, directory entries, 
words of memory), a set of operations that yield a useful 
editor. More complex data structures may require a few 
additional primitives; for example, Lisp editors, which 
edit nested lists represented as binary trees, have left, 
right, and up positioning commands [9]. Less complex 
data structures may permit automatic construction of 
editors; for simple databases like the inode list, it is easy 
to imagine a single-process generalized editor parame- 
trized by a description of the data structure it edits. The 
logical extrapolation of this is the inclusion of editing 
primitives in data structure definitions, Simula-style [1]. 
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