
Received January 1978; revised October 1979; accepted December
1979

References

1. Avery, K.R., and Avery, C.A. Design and development of an
interactive statistical system (SIPS). Proc. Comptr. Sci. and Statistics:
8th Ann. Symp. on the Interface, Health Sciences Comptg. Facility,
UCLA, Los Angeles, Calif., 1975, pp. 49-55.
2. Box, G.E.P. Science and statistics. J. of the Amer. Statistical Assn.
71 (Dec. 1976), 791-799.
3. Brode, J. Generalizing the function call to statistical routines--
An application from the DATATRAN language. Proc. Comptr. Sci.
and Statistics: 10th Ann. Symp. on the Interface, Nat. Bureau of
Standards, Gaithersburg, Md., 1977, pp. 357-361.
4. Brode, J., Stamen, J., and Wallace, R. The DATATRAN
language. Proc. Amer. Statistical Assn., Statistical Comptg. Section,
1976, pp. 126-129.
5. Buchness, R., and Engleman, L. MiniBMD: A minicomputer
statistical system. Proc. Comptr. Sci. and Statistics: 10th Ann. Symp.
on the Interface, Nat. Bureau of Standards, Gaithersburg, Md., 1977,
pp. 9-13.
6. Fox, D.J. Some considerations in designing an interactive data
analysis system. Proc. Comptr. Sci. and Statistics: 8th Ann. Symp. on
the Interface, Health Sciences Comptg. Facility, UCLA, Los Angeles,
Calif., 1975, pp. 61-65.
7. Fox, D.J., and Guire, K.E. Documentation for MIDAS. Revised
2nd edition, Statistical Res. Lab., Univ. of Michigan, Ann Arbor,
Mich., Aug. 1974.
8. Francis, I., Heiberger, R.M., and Velleman, P. Criteria in the
evaluation of statistical program packages. Amer. Statistician 29 (Feb.
1975), 52-55.
9. Guthrie, D., Avery, C., and Avery, K. Statistical Interactive
Programming System (SIPS), User's Reference Manual. Oregon State
Univ., Corvallis, Oregon, 1974.
10. lsaacs, G.L. Interdialect translatability of the BASIC
programming language. ACT Tech. Bull. No. 11, The Amer. College
Testing Program, Iowa City, Iowa, 1972.
11. Kennedy, T.C.S. The design of interactive procedures for man-
machine communication. Internat. J. Man-Machine Studies 6 (1974),
309-334.
12. Klensin, J.C., and Dawson, R. CS: The consistent system. In A
Comparative Review of Statistical Software, Ivor Francis, Ed., The
Internat. Assn. for Statistical Comptg., The Netherlands, 1979, pp.
151-161.
13. Ling, R.F., and Roberts, H.V. User's Manual for IDA. The
Scientific Press, Palo Alto, Calif., 1980.
14. Ling, R.F. Constraints in the design and implementation of
interactive statistical systems for minicomputers. Proc. Comptr. Sci.
and Statistics: 10th Ann. Symp. on the Interface, Nat. Bureau of
Standards, Gaithersburg, Md., 1977, pp. 26-34.
15. Ling, R.F., and Roberts, H.V. IDA and user interface. Proc.
Comptr. Sci. and Statistics: 8th Ann. Syrup. on the Interface, Health
Sciences Comptg. Facility, UCLA, Los Angeles, Calif., 1975, pp. 91-
94.
16. Plattsmier, R.A. Criteria for evaluation of interactive statistical
programs and packages. Proc. Comptr. Sci. and Statistics: 10th Ann.
Syrup. on the Interface, Nat. Bureau of Standards, Gaithersburg,
Md., 1977, pp. 384-388.
17. Ryan, T.A., Joiner, B.L., and Ryan, B.F. Minitab Handbook.
Duxbury Press, North Scituate, Mass., 1976.
18. Ryan, T.A., Joiner, B.L., and Ryan, B.F. Minitab II. In A
A Comparative Review of Statistical Software, Ivor Francis, Ed., The
Internat. Assn. for Statistical Comptg., The Netherlands, 1979, 185-
196.
19. SPEAKEASY-3 Reference Manual Level Lambda IBM OS/VS
Version. Compiled by S. Cohen and S.C. Pieper, Argonne Nat. Lab.,
Argonne, I11., 1976.
20. Sterling, T. D. Guidelines for humanizing computer information
systems: A report from Stanley House. Comm. A CM 17, 11 (Nov.
1974), 609-613.
21. Velleman, P., and Welsch, R.E. Some evaluation criteria for
interactive statistical program packages. Proc. Amer. Statistical Assn.,
Statistical Comptg. Section, 1975, pp. 10-12.
22. Whitten, D.E., and deMaine, P.A.D. A machine and
configuration independent Fortran: Portable Fortran (PFortran).
Trans. on Software Eng. SE-1 (March 1975), 111-124.

154

Artificial Intelligence/
Language Processing

C.A. Montgomery
Editor

A Generalized Text
Editor
Christopher W. Fraser
The University of Arizona

Text is not the only data that needs editing; for
example, file deletion utilities edit directories. If all
"editors" used the same command language, they would
be easier to learn, remember, and code. This paper
describes a generalized editor that edits text,
directories, binary core images, and certain operating
system data with a single user interface.

Key Words and Phrases: editor, text, command
language, CRT

CR Categories: 3.7, 4.3

I. Introduction

Editing means examining and modifying data.
Though most editing programs edit text, other types of
data need editing too: Utilities that delete and rename
files edit directories and interactive debuggers edit binary
core images. Typically, each utility has its own command
language and command scanner. However, each of these
utilities is just an "editor" and, with careful design, might
share the system text editor's command language and
scanner. Duplicating command scanners wastes pro-
gramming effort. Duplicating command languages frus-
trates users, especially naive users: More than one typist
has abandoned computing over poor user interfaces. As
computers proliferate, more naive users must be accom-
modated; hence the growth of interest in improving
command languages [3, 10].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's present address: C.W. Fraser, Department of Computer
Science, The University of Arizona, Tucson, AZ 85721.
© 1980 ACM 0001-0782/80/0300-0154500.75.

Communications March 1980
of Volume 23
the ACM Number 3

cwfraser
Note
© ACM, 1980. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Communications of the ACM, {23, 0001-0782, (1980)} http://doi.acm.org/10.1145/358826.358834

This paper describes the generalized text editor s. s
offers commands like those of a conventional text editor,
but, by changing a few lines of code, it can edit nontex-
tual data with the same user interface. Instances of s edit
text, directories, binary data, and the internal state of a
computer. They affect nontext like a conventional editor
affects text. Where a conventional editor presents text
from a file, s presents the textual representation of non-
text (utilities routinely present as text such nontext as
directories and core images). Where a conventional edi-
tor changes a file to reflect changes requested by the
user, s changes the underlying nontext to reflect similar
user changes to its textual representation. As such, s
offers a "canned" user interface for editor-like utilities.
It has been retrofitted to existing utilities, it has simplified
the implementation of new ones, and it promotes local
standardization of user interfaces.

Section 2 shows how s is used to edit text, file system
directories, machine states, and binary data. Section 3
describes its implementation.

2. Example Editors

2.1 A Text Editor
s is a generalized CRT-based editor based on the

Yale editor e [4]. It is best introduced by considering the
instance of s that edits text. It displays a two-dimensional
window on a text file and allows the user to change it by
moving a cursor about the screen with the terminal 's
cursor control keys and typing new characters over the
old ones. It changes the data being edited to reflect the
user's changes to the screen: The screen always displays
the current version of the edited data. Special function
keys--dedicated keys on some terminals, control char-
acters on others-- invoke special functions. For example,
+pages displays the next page (screen) of the file. All
special functions accept an optional argument:

escape 2 +pages

advances the screen's window on the file by two pages.
-pages moves back; +lines and -lines move by so many
lines, not pages; +search and -search move to the next
occurrence of text matching their argument, a pattern
given as a regular expression. All special functions re-
member and reuse their arguments:

escape abc +search +search

finds the first and then the second occurrence of "abc".
delete deletes the line on which cursor resides (from the
cursor on); if its argument is a number n, it deletes n
lines; if its argument is a cursor movement (i.e., only
cursor control keys were struck between escape and
delete), it deletes the characters and lines between the
initial and final cursor positions and so may be used to
delete part of a line and to join lines, delete remembers
what it deletes; a subsequent put inserts the last-deleted
data at the current cursor position and so may be used

155

to move data; if given an argument, put puts it instead
and so may be used to insert new text. pick remembers
what delete does but deletes nothing; it may be used to
duplicate text. insert inserts as much (blank) space as
delete deletes, start starts editing another file, named by
its argument, stop terminates an editing session. This is
s's complete user interface; all instances of s use it,
including those that edit nontextual data.

2.2 A Machine-State Editor
Some instructors at the University of Arizona intro-

duce assembly language programming by having the
students program a simplified, pedagogical machine.
This machine has an accumulator, a program counter,
20 words of memory, and an instruction format simple
enough to program absolutely: a one-digit opcode and a
two-digit address (e.g., the opcode for load is 6, so
instruction 620 loads the last memory cell into the ac-
cumulator). Until recently, students programmed in
batch: They prepared cards that gave an initial machine
state and received a printed trace of the resulting states.
Using the generalized text editor as a canned front end,
an interactive simulator was coded in an hour. The editor
displays the state of the machine, which, initially, is

ac = 0

pc = 0

mill = 0
m[21 = 0

m[201 = 0

The student creates a program by editing this. For ex-
ample, overstriking can yield the state

ac = 0

p c = 1

mill = 620
m[2] = 0

m[20] = 17

which points the pc at a load ("620") followed by a halt
("0"). m[20] holds the value to be loaded. The student
presses start to execute the program. The editor executes
until it encounters the halt in m[2] and then displays the
new machine state

ac = 17

pc = 3

m[l] = 620

m[2] = 0

m[20] = 17

The accumulator has been loaded with 17 and the pro-
gram counter points after the halt. The student may
continue by editing this machine state or quit by pressing
stop. This simulator was much easier to code than the
batch version, and if the student knows the text editor,
the simulator may be used without special training.

C o m m u n i c a t i o n s M a r c h 1980
o f V o l u m e 23
the A C M N u m b e r 3

2.3 A Directory Editor
The directory editor presents a file system directory

just as the operating system's (in this case, UNIX 1)
standard directory listing utility does. For the reader new
to UNIX, a short directory might appear as

-rwxrwxrwx 1 cwf 1738 Feb 11 18:55 abc
d r w x r - x r - x 1 cwf 624 Jan 3 6 :45def

The first character tells whether the file is itself a direc-
tory: file abc is not, file def is. The next nine give the
read, write, and execute permissions for the file's owner,
his project group, and all other users, respectively: Any-
one can do anything to abc, but only the owner can
change def. The last five fields ~ give the number of file
system pointers to the file ("1"), its owner ("cwf"), its
length ("1738"), its creation date ("Feb 11 18:55"), and
its name ("abc").

The directory may now be changed by editing this
text. Deleting the first line deletes file abc. Deleting the
"b" from the same line changes its name to "ac". Over-
striking the "cwf" changes its owner. Overstriking the
permission flags changes them. Overstriking the length
field does nothing: Changes are made only if they make
sense and the user's access privileges permit them. start
displays another directory or directory fragment accord-
ing to UNIX convention. For example, the conventional
UNIX commands

Is
Is *.c

respectively list the user's entire directory (null argu-
ment) and just those files whose names end in ".c"
("*.c" argument). Analogously, the directory editor's
commands

escape start
escape *.c start

edit what the ls commands above displayed. All in all,
the directory editor subsumes five different UNIX com-
mands, which account for 16 percent of all command
accesses.

2.4 A Binary Disk Editor
Binary patches to a disk are sometimes necessary.

For example, when a physical disk block goes bad, it is
usually removed from the file it represents and added to
a file of "dead" blocks that will never be referenced.
Under UNIX, a system expert usually does this by hand,
with a utility that can present and change arbitrary,
uninterpreted words on the disk. Because the job is so
delicate, it would help if the file descriptors, called
"inodes" [8], were displayed in a more natural form. This
is where s is useful.

An inode is a fixed-length record of 18 fields: Some
are flags, best shown in octal; others are disk addresses,
best shown in decimal; still others are best suppressed.

UNIX is a t rademark of Bell Laboratories.

156

Using the generalized editor, an inode editor has been
built that presents a device's inodes, one per line with
each field in its natural format. Overstriking, the expert
removes the address of the bad block from the user's
inode and then adds that address to the "dead" inode.

Though it plays a special role, the inode list resembles
many conventional databases: It is a list of records. So
the inode editor is easily adapted to other similar data-
bases: The user need only change the structure declara-
tion and the routines that convert between the internal
and display formats.

3. Organization

Changing a file name differs from changing an inode,
even though a generalized editor makes the processes
look the same. Different data types require slightly dif-
ferent editors: With so many types of data to edit,
construction of editors must be made easy. This suggests
separating the editor into a data-independent, front-end
display manager that calls on a set of editing primitives
that actually edit data. Implementing an editor for a new
data type means implementing a new set of primitive
subroutines. The next three sections describe issues that
bear on the choice of a user interface, of a set of editing
primitives, and of an implementation strategy.

3.1 The User Interface
To the user, a generalized text editor looks like a

conventional text editor. Many user interfaces are pos-
sible for a text editor, so many are possible for a gener-
alized editor; however, a generalized text editor modeled
after a line editor inherits certain problems. Why? The
user of a line editor indicates target text by giving a line
number or a pattern that the target must match. If none
is given, the editor may assume a default line number
(perhaps the last line addressed), but the user is often
forced to give an explicit address. For example, to delete
the next line containing "editor" using UNIX's text
editor ed [5], the user would type

/edi tor /d

A directory editor modeled after such a line editor would
use the same command to delete a file named "editor",
instead of using the standard UNIX file deletion utility
rm:

rm editor

The generalized editor excuses users from learning the
syntax of this command (and the others that edit direc-
tories) but offers the user little more than a certain
elegance of having all editing operations use the same
syntax: Both commands require typing the name plus
three characters of overhead. To delete the same line
with a screen editor, the user merely holds down a cursor
control key until the cursor is positioned on the line
containing "editor" (many CRTs have repeating cursor

Communicat ions March 1980
of Volume 23
the ACM Number 3

control keys) and then presses a delete key. The number
of characters of overhead is about the same--one cursor
control key, a pause until the cursor is in position, and
delete--but the name need not be typed. Even more
typing is saved if the user needs to check the directory
before or after editing. With a typical operating system,
or with a generalized line editor, listing the directory
requires another command; with a generalized screen
editor, which always displays a screen full of the current
version of the data being edited, the directory is already
visible (at least partly) and so need not be listed explicitly.
It was to save such typing that a screen editor interface--
rather than a line editor interface--was built on s's
editing primitives.

3.2 The Editing Primitives
s's editing primitives are a set of subroutines that edit

a collection of vectors of lines or, more precisely, arbi-
trary nodes represented as lines of text. A screen editor
may be constructed for any data that may be viewed in
this way; some data structures do not oblige, but as the
examples of Section 2 indicate, many do. The primitive
subroutines edit lines, not characters, for good reason:
To change a file's name from "abc" to "def ' , the user
will first overstrike the "a", then the "b", then the "c",
giving the trace

abc
dbc
dec
def

Clearly, this requests one rename operation, not three,
so the front-end screen editor handles intra-line editing
internally and sends requests to change lines (of text,
directories, etc.) only when the user moves the cursor to
another line or executes a special function.

The primitives are:

fetch(int: n; string: 1)
change(int: n; string: 1)
insert(int: n; string: I)
delete(int: n)
search(int: n; string: 1)
open(string: f)
close()
init()
stop()

fetch node n into 1
change node n to 1
insert 1 after node n
delete node n
search from node n on for s
edit structure f
stop edit o f las t-opened structure
initialize primitives
terminate primitives

The screen editor front end translates screen editor com-
mands into calls on these primitives. For example, it
translates overstrikes into calls on fetch (to retrieve what
is there) and change (to record the overstrike). It trans-
lates the screen editor delete command into calls on the
delete primitive (one for each line deleted) and on change
(in case just part of a line is deleted).

This set of primitives is more than enough to imple-
ment s's commands. The search primitive is not strictly
necessary--in the directory editor, it is implemented with
calls on the fetch primitive and a string matching rou-
t i n e - b u t performance is sometimes improved by allow-

157

ing for the use of another algorithm (see the next section).
The change primitive is strictly necessary: perhaps not
for text where delete/insert does as well, but certainly
for directories where a change (i.e., a rename) is not a
deletion followed by an insertion. For some editors, some
primitives have no effect; for example, one cannot insert
or delete a word in memory, so the machine-state editor
does not implement insert or delete.

3.3 Implementing the Editing Primitives
The most natural implementation of the editing prim-

itives is as a closed set of subroutines that actually edit
data. For example, the machine-state editor maintains
variables that simulate the machine's accumulator, pro-
gram counter, and memory: init initializes them, fetch
retrieves and formats their values, change changes them,
and open simulates the machine-language program that
starts at rn[pc]. Similarly, the inode editor actually
fetches and changes inodes (if the user has the proper
privileges), and one version of the text editor borrowed
its primitives from a previously existing line editor.

When a generalized editor is being interfaced to an
existing utility, another strategy is available: The primi-
tives may command the existing utility to do their editing
for them. For example, the first set of primitives for the
text editor created a slave line editor process and com-
manded it to fetch and change lines from text files [2]
(here the search primitive tells the line editor to do the
searching, avoiding repeated fetches). Similarly, the di-
rectory editor's primitives create a slave command inter-
preter and send it conventional, user-level commands to
delete and rename files. Perhaps surprisingly, if the
primitives avoid asking the slave for data available lo-
cally, the slave-process editors run almost as fast as their
single-process counterparts. Furthermore, slave-process
editors are often the easier to implement, especially when
it is hard to borrow code from the slave for a single-
process version; in fact, to ensure file system integrity,
an operating system may prevent a directory editor from
deleting files itself, forcing a slave-process design. On the
other hand, slave processes do complicate error detec-
tion. Suppose the directory editor is asked to delete a
protected file. The delete primitive's slave may print a
(possibly cryptic) error message, but it may not have
been designed to notify its parent process of the error.
Since the front end cannot know whether anything was
deleted, it must refresh the screen from scratch: It cannot
rely on local data already on the screen.

A variant of the slave-process scheme that is occa-
sionally useful accumulates slave commands in a file
instead of sending them directly to a slave process. For
example, a directory editor might operate on a textual
copy of a directory and accumulate a file of commands
that - -when executed later--will change the actual direc-
tory as requested. Delaying the actual editing precludes
error checking entirely, but it does result in a directory
editor that exploits existing utilities without using more

Communica t ions March 1980
o f Volume 23
the A C M N u m b e r 3

than one process at a time (a restriction imposed by
many operating systems), and that allows the user to
back out of a bungled editing session without changing
the directory.

The increasing availability of programmable termi-
nals presents a final variant of the slave-process scheme.
The front end (including the primitives) can run on some
intelligent terminals, presenting commands to, and inter-
preting responses from, a slave running on a larger host
computer. The host need not support multiple processes
per user because multiple processors realize the multi-
processing. Experience with such an arrangement may
suggest changes to s; for example, the front end might
retain several screenfuls locally--and even prefetch data
when the connection to the host is free--to reduce com-
munication delays. Other documents expand on this
design [2].

4. Implementation

s extends a previously written screen editor that was
a front end to a line editor, and only a line editor [2]. It
is a 300-line program written in the language C [6] and
runs on a PDP-11/70 under UNIX at the University of
Arizona. Available editing primitives edit text files, di-
rectories, inodes, the state of a pedagogical machine, the
date and time, and other data; they are 42 to 94 lines
long. It took one person two weeks to construct the first
directory editor; it took one to eight hours to construct
each of the others. For its improvements to the various
command languages, the generalized editor adds about
8,000 bytes in memory requirements and a CPU over-
head that is imperceptible but otherwise unquantifia-
ble--it depends so on the editing session. This particular
implementation optimized development time; processor
utilization could be improved was there a need to do so.

Received July 1978; revised July 1979; accepted December 1979

References
1. Birtwistle, G.M., Dahl, O-J., Myhrhaug, B., and Nygaard, K.
SIMULA BEGIN. Petrocelli, New York, 1973.
2. Fraser, C.W. A compact, portable CRT-based editor. Software--
Practice and Experience 9, 2 (Feb. 1979), 121-125.
3. Ingalls, D.H.H. The Smalltalk-76 programming system: Design
and implementation. Conf. Rec. 5th Ann. ACM Symp. on the
Principles of Programming Languages, Tucson, Arizona, 1978,
pp. 9-16.
4. Irons, E.T. and Djorup, F.M. A CRT editing system. Comm.
ACM 15, 1 (Jan. 1972), 16-20.
5. Kernighan, B.W. A tutorial introduction to the ed text editor.
Tech. rep., Bell Laboratories, Murray Hill, N.J.
6. Kernighan, B.W. and Ritchie, D.M. The Cprogramming
Language. Prentice-Hall, Englewood Cliffs, N.J., 1978.
7. MacLeod, I.A. Design and implementation of a display-oriented
text editor. Software--Practice and Experience 7, 6 (Nov. 1977),
771-778.
8. Ritchie, D.M. and Thompson, K. The UNIX time-sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
9. Sandewall, E. Programming in the interactive environment: The
LISP experience. Comptg. Surv. 10, 1 (March 1978), 35-71.
10. Unger, C. Command Languages. North-Holland, Amsterdam,
1975.

5. Discussion

The generalized text editor primitives embody a sim-
ple theory of editing that offers, at least for such simple
data structures as lists (of text lines, directory entries,
words of memory), a set of operations that yield a useful
editor. More complex data structures may require a few
additional primitives; for example, Lisp editors, which
edit nested lists represented as binary trees, have left,
right, and up positioning commands [9]. Less complex
data structures may permit automatic construction of
editors; for simple databases like the inode list, it is easy
to imagine a single-process generalized editor parame-
trized by a description of the data structure it edits. The
logical extrapolation of this is the inclusion of editing
primitives in data structure definitions, Simula-style [1].

Acknowledgment. R. Griswold suggested several im-
provements to an early version of this paper.

158 Communications March 1980
of Volume 23
the ACM Number 3

