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Introduction 

This paper describes a system that accepts compact 
specifications of an intermediate code and target 
machine and produces program code for an inte- 
grated code generator and peephole optimizer. A 
compiler for most of C uses this packa.ge. It emits 
code comparable to PCCI’S, but it runs over five 
times faster on preliminary benchmarks. This com- 
piler also runs over twice as fast as a version of pcc2 
with a hand-coded, VAX-specific code generator. 

The code generators are produced as follows. A 
programmer describes a naive code generator by 
means of a non-procedural specification. The pro- 
grammer also prepares a machine description for a 
retargetable peephole optimizer [2]. These two sys- 
tems are used together to compile a testbed, and the 
compiler records each peephole optimization as it is 
made. This record and the specification of the naive 
code generator are compiled into a fast, integrated 
code generator and optimizer. This production code 
generator then takes the place of the slower “train- 
ing” version. The production code generator and 
optimizer are integrated to the point that the code 
to be generated is communicated from one to the 
other by encoding it in the program counter, which 
obviates most inter-phase communication costs. 

Interpretive peephole optimizers have been driv- 
en by traces from retargetable peephole optimizers 
[3] and integrated with interpretive code generators 
[4], but the current work is distinguished by the 
production of a hard-coded, optimizing code gener- 
ator. Historically, retargetable code generators (i.e., 
those not largely rewritten for each new machine) 
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have applied a fixed, compile-time interpreter to ta- 
bles t1la.t have been automatically generated from 
formal specifications [S]. The code generators de- 
scribed below interpret no tables, which helps them 
run fast. 

Representation 

Both the training and production code generators 
accept the same input - an “abstract syntax dag” 
built by the front end. They use dags rather than 
trees to accommodate source language features that 
implicitly reuse values (like C’s auto-increment and 
augmented and multiple assignment) as well as 
front ends that eliminate common subexpressions 
as they create nodes. Front ends may confine them- 
selves to trees if the source language permits and if 
common subexpression elimination is not desired. 

The front end compiles, for example, the C state- 
ment up [r-c+73 =0 into a tree annotated with inter- 
mediate code: 

ISET + ICONST 0 
1 

IADD + GLOBAL up 
1 

IMUL * ICONST 4 
1 

IADD ---+ ICONST 7 
1 

ISUB - IDEREF + GLOBAL c 
1 

IDEREF 

1 
GLOBAL r 

The front end has propagated types and folded 
them into the opcodes (e.g. the I prefix flags integer 
opcodes) so that the back end need not understand 
t,he frout end’s type system, which is typically more 
complex than the back end’s. The front end has 
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ato exposed the multiplication implicit in array in- 
dexing, so it needs the sizes and alignments of the 
basic datatypes, but these are easily isolated in a 
small table. 

The code generators rewrite dag nodes in place, 
replacing the intermediate code with naive and then 
optimized assembly code. In the example above, 
each node is first rewritten with a single instruc- 
tion and then combined with one or more of its de- 
scendants via peephole optimization. On the VAX, 
for example, the subtree rooted at the ISUB above 
is ultimately replaced with the instruction sub13 
-c,,r,r4, and the rest of the tree is replaced with 
clrl -up+4*7 Cr41. That is, the final tree is: 

clrl -up+4*7 Cr41 

I 
sub13 -c,J-,r4 

The clrl occupies the node originally occupied by 
the ISET, and the sub13 occupies the node orig- 
inally occupied by the ISUB. The actual register 
assignment for temporaries (like r4 above) is not 
needed during code generation and optimization, so 
this task is postponed until these phases complete. 

Since the same nodes represent intermediate and 
assembly code, the code generator needs one rep- 
resentation for both. Assembly code is text, so 
intermediate opcodes are also represented as text. 
To avoid the necessity of creating new strings at 
compile time, the system abstracts constants, iden- 
tifiers, and register numbers out of the text. For 
example, the instruction sub13 r2,r3,r4 is rep- 
resented with the “skeleton” sub13 r%i ,r%O,r%2 
plus bindings for the “pattern variables” xi. The 
system enumerates all useful skeletons during train- 
ing and stores them in a table. Opcodes are thus 
represented as indices into this string table. The 
compiler has not yet accommodated full C, but the 
size of the table may be estimated. A production C 
compiler generated over 26,000 instructions for an 
ll,OOO-line testbed, but used fewer than 900 distinct 
instruction variants. Intermediate codes and target 
instructions that are always optimized out might 
increase this figure somewhat, but even so the table 
should not exceed 40kb even on the VAX, because 
the average skeleton takes less than 25 bytes, in- 
cluding four bytes for the pointer to each. 

For nodes with n children, the first n pattern 
variables denote the result registers of the children, 
and bindings for the rest are stored locally. For 
example, the instruction sub13 r2,r3,r4 is repre- 

sented as a node with the following fields: 

op = 39 where opcode[39] = 
“sub13 r%l , r%O, rX2” 

kids CO] = pointer to first child 
kids [I] = pointer to second child 
vars CO1 = “4” 

The bindings for the pattern variables %O and %I are 
never stored in this node because they are available 
(after register assignment) in the children’s vars 
fields. Pattern variable %2 is stored in vars CO] be- 
cause it is the first (and only) pattern variable that 
needs local storage; this cell is empty until registers 
are assigned. 

Specifying the Code Generator 

Here are a few lines from the specification that de- 
fines the int,ermediate code and the naive VAX code 
generator: 

%shape 0 1 
GLOBAL moval -%O,r%l 

ishape 2 2 
IADD add13 r%l,r%O,r%2 
ISUB sub13 r%l,r%O,r%2 

ishape 2 
ILT cmpl r%O,r%l; jlss L%2 
ISET movl r%i, (r%O) 
. . . 

Except for the %shape directives, this specification 
forms two columns. The first lists the intermediate 
code’s opcodes, and the second gives equivalent but 
naive assembly code. Thus the intermediate code 
IADD is to be replaced with the VAX skeleton add13 
r%l,r%O ,r%2, and the intermediate code ILT (for 
“integer less-than”) is to be replaced with the in- 
structions cmpl r%O,r%l and jlss L%2. 

The %shape directives describe features shared 
by the opcodes that follow. Each lists one or two 
numbers. The first number specifies the number 
of children of subsequent opcodes. For example, 
opcodes GLOBAL and moval -%O, r%l are leaves, and 
the remaining opcodes above are binary. 

The presence of a second number indicates that 
a register must be allocated to hold the target in- 
struction’s result. The number specifies the pattern 
variable to which the index of the register must 
be bound. For example, moval -%O,r%l needs a 
register allocated and bound to %l, opcodes add13 
r%i,r%O ,r%2 and sub13 r%l ,r%O,r%2 need a reg- 
ister allocated and bound to %2, and the remaining 
instructions above need no result register at all. 
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When building an abstract syntax dag, the front 
end sets the opcode fields using values from the first 
column. If the intermediate code uses a constant 
field - in the examples above, GLOBAL needs the 
name of a global variable and ILT needs a label 
number - the front end stores it in the appropriate 
pattern variable. The automatically generated code 
generators do the rest. 

The compiler using these code generators is not 
yet complete, but it appears that a naive code gen- 
erator for, say, ANSI C will require about three 
pages of lines like those above. The register alloca- 
tor is retargeted by changing a table if the machine 
uses general registers; as with most retargetable 
code generators, machines with asymmetric regis- 
ter sets may require some recoding. 

The Training Code Generator 

The specification above is automatically compiled 
into a training code generator, whose general out- 
lines appear below: 

char *opcode[MAXOPSl = ( 
. . . 
/* 36 */ ” IADD”, 
/* 37 */ “add13 r%l,r%O.r%2” 
/* 38 */ “ISUB”, 
/* 39 */ “sub13 r%l ,r%O ,r%2” 

rewrite(a) 
register struct node *a; 
c 

switch (a->op) C 
* . . 
case 36: L36: /* IADD */ 

rewrite(a->kids CO1 > ; 
rewriteca->kids Cl1 > ; 
a->op = 37; 
got0 L37; 

case 37: L37: /* add13 r%l,r%O,r%2 */ 
(optimizing case analysis to go here) 
break; 

. . . 
3 
combine (a) ; (only in training version) 

3 

Initially, the code generator uses only those opcodes 
that appeared in the specification of the naive code 
generator, so the initial opcode list holds exactly 
the two columns from the specification. 

The routine rewrite is the automatically gener- 
ated, integrated code generator and optimizer. It 
accepts a pointer to a dag decorated with the sim- 
ple intermediate code, and it rewrites the dag in 
place to represent optimized assembly code. The 
string opcodes are recoded as a range of contigu- 
ous integers primarily so that rewrite can decode 
them with an efficient switch statement. Each op- 
code has a distinct case that rewrites its particular 
opcode and jumps off to the case that handles the 
new opcode just introduced into the dag. 

Cases for intermediate codes recursively rewrite 
any children, then change the node’s opcode field 
to represent the specification’s naive target instruc- 
tion, and finally jump to the case for that target in- 
struction. The training code generator has no com- 
piled code to improve these instructions, so their 
cases break out of the switch and call combine, 
which is a retargetable peephole optimizer [2]. 

The production code generator replaces the call 
on combine with hard-coded case analysis in the 
cases for target instructions. This case analysis 
takes the form of an if-then-else chain that may edit 
the dag and jump off to the case that handles the 
new opcode. An example is presented in due course. 

While the code is most easily introduced in the 
form above, it is actually optimized slightly. The 
code generator generator does not emit redundant 
branches, so some cases fall into their successor. 
(Recall that C cases exit only on an explicit break.) 
For example, the goto L37 above is really omitted. 

Also, the pattern above would have the pro- 
duction code generator’s case analysis overwrite 
a->op (sometimes more than once) before leaving 
the switch statement. rewrite reads this field only 
upon entry, so it can be safely out-of-date until the 
break. Thus the code generator slides the assign- 
ment to a->op down just before the break, which 
guarantees that each invocation of rewrite sets it 
exactly once. In a sense, the program counter en- 
codes the proper value for the opcode field while 
control remains inside the switch statement. This 
results in redundant assignments to the opcode field 
when rewrite re-encounters a multiply-referenced 
node that has been previously traversed and rewrit- 
ten, but moving the assignment saves more than it 
sacrifices. 

Two arrays not shown parallel the opcode array. 
They record for each opcode the number of chil- 
dren and the number of the pattern variable that 
denotes any result register. rewrite does not need 

81 



these arrays because their values are compiled into 
the code; for example, the IADD case has the proper 
number of recursive calls compiled in, so it need ex- 
amine no table to learn how many children it has. 
These arrays are needed by only the register allots 
tor and output routine, which need to know where 
to store register names and how many children to 
traverse. Flags in the nodes (namely, zeros in the 
first unused slots in kids and vms) were used ini- 
tially but rejected because maintaining them cost 
almost as much as maintaining the useful data. 

The Peephole Optimizer and Trace 

The training routine combine is a retargetable peep- 
hole optimizer. A programmer captures the se- 
mantics of the target machine’s instructions in a 
bi-directional grammar for translation between as- 
sembly language and register transfers. A machine- 
independent optimizer uses this machine descrip- 
tion to translate pairs and triples of assembler skele- 
tons to register transfer skeletons, which it sym- 
bolically simulates to learn their combined effect. 
It then searches the machine description for an in- 
struction with this combined effect. If it finds one 
whose cost does not exceed the cost of the original 
instructions, it rewrites the dag to use the new in- 
struction. If the value produced by an instruction 
is used several times, its cost is divided equally be- 
tween its users. A full review of this technique is be- 
yond the scope of this paper, but Reference 2 elab- 
orates. The current implementation adds instruc- 
tion costs and machine descriptions re-engineered 
so that, for example, the current, nearly complete 
VAX description takes only 59 lines. 

During training, the optimizer records every op- 
timization. For example, when it replaces moval 
-%O,r%l and movl (r%O) ,r%l with movl -%O ,r%l 
(the moval is the first child of the movl, so the for- 
mer’s result register, r%i, is denoted by r%O in the 
latter), the optimizer adds the following record to 
its growing optimization trace: 

self==movl (r%O),r%l 
kidO==moval -%O,r%l 
new=movl ,%O,r%l 
refs<=l 
aO=bO 
ai=ai 
result=1 

The first three lines are self-explanatory. The fourth 
reports that, according to the cost metric in the ma 
chine description, the optimization pays off only if 
the child is referenced just once. The next two lines 

note that the new instruction’s %O is the old child’s 
x0, and the new instruction’s %I is the old parent’s 
Xi. The last line above reports that the result reg- 
ister of the new instruction is to be bound to xl. 
The specification of the code generator names the 
pattern variable corresponding to the result register 
for each naive instruction, but the new instruction 
above has not been seen before, so the optimizer 
must infer and report the pattern variable corre- 
sponding to its result register. 

The Production Code Generator 

To produce the production system, the code gen- 
erator generator accepts the trace above and the 
specification of the naive code generator. It pro- 
duces an optimizing code generator that is like the 
naive one presented above, except the opcode list is 
extended to include all the new instruction variants 
generated during training, optimizing case analysis 
is inserted at the head of each case that handles a 
target instruction, and the call on combine is omit- 
ted. Here, for example, are the production versions 
of the cases presented above: 

case 36: L36: /* IADD */ 
rewrite(a->kids CO1 ) ; 
rewriteca->kids Cl1 > ; 

case 37: L37: /* add13 r%l,r%O,r%2 */ 
b = a->kids CO1 ; 
if ( 
b->op == 127 /* mull3 $%l,r%O,r%2 */ 
&& b->vars[Ol == CON4 
> ( 

a->kids CO1 = b-Bkids CO1 ; 
got0 L93; /* moval (r%l) MO1 ,r%2 */ 

3 
if ( . . . 
a->op = 37 ; 
break ; 

The conditional looks for a sequence that multi- 
plies a register by four and adds it to another reg- 
ister. The expression b-Wars CO] == CON4 com- 
pares the %I from mull3 $%i ,r%O,r%2 with the 
constant string “4”. It uses b-Wars CO] because %I 
is the first pattern variable of b that requires local 
storage. Strings are stored uniquely in a constant 
table so that an address comparison can be substi- 
tuted for what would otherwise be a character-by- 
character comparison. If the conditional succeeds, 
the dag is rewritten in place, so the “then” arm 
overwrit,es a’s fields. In this case, the new values 
of %I and X2 are the same as the old ones, so only 
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the change to %O requires code, which promotes a 
grandchild. 

If the conditional fails, the code generator looks 
for another pattern, at the point of the ellipsis 
above. If no optimization applies, control falls off 
the chain of ifs into code that updates a->op and 
returns. 

In the optimization above, the new instruction 
costs no more than the one originally pointed to 
by a, so the replacement pays off regardless of the 
number of uses of b. When the new instruction 
costs more than a, the replacement generally pays 
off when a + b/n 1 c, where n is the number of uses 
of b, and a, b, and c denote the costs of a, b, and the 
new instruction, respectively. All but n are known 
when the compiler is generated, so the code gen- 
erator generator computes the largest n for which 
the replacement pays off and inserts a clause like 
b->count <= 2 in the optimization’s enabling con- 
dition (e.g. after the comparison with CON4 above). 
Different cost metrics (like space, expected time, 
worst-case time) yield different comparands. 

To support such comparisons, the code genera- 
tor maintains reference counts as it edits the dag. 
Consider the example above. It edits the dag so 
that a references b->kids[O] instead of b. Thus 
it is necessary to decrement b->count. If the re- 
sult is zero, then all reference counts are correct: 
node b is vanishing, but a inherits b’s references to 
its children, so these children have the same num- 
ber of references before and after the edit. But if 
--b->connt exceeds zero, then b is referenced else- 
where. It still references its children, and now a will 
too, so the reference counts for b’s children must be 
incremented. Thus the actual then-clause above is 

if (--b->count) 
++b->kids CO] ->count ; 

a->kids CO] = b->kids CO] ; 
got0 L93; /* moval Ml) Cr%Ol ,r%2 */ 

In cases where b points to a leaf, the counts are 
maintained with just --b->count. And in cases 
where the optimization’s enabling condition es- 
tablishes that b->count was one, then even the 
--b->count is omitted. 

Node storage is not reclaimed above because even 
the simplest implementation consumed almost as 
much time as the case analysis itself. The compiler 
thus allocates nodes from a fixed pool and then frees 
the entire pool at once at the end of the expression, 
block, or procedure. (All three of these compilation 
units have been used with this system.) 

The case analysis above is close to typical. An 
“average” one has two comparisons, two assign- 
ments, and a simple --b->count. A few perform 
no assignments at all, because all important fields 
are already in the right place. Of course, an assign- 
ment to a->op occurs just before control leaves the 
switch. 

The code generator is fast. a and b are in regis- 
ters, so each line above takes just one or two VAX 
instructions, and the entire fragment takes just 17. 
It has not yet been possible to compile a thorough 
testbed, but it appears that a complete rewrite 
should not require more than 60kb. 

It is also possible to eliminate most of the jumps 
above. Rather than ending a change with goto 
Ln, the code generator generator could simply place 
case n and its code at the point of the goto. Since 
most labels are the target of exactly one goto, most 
of the branches would vanish. This optimization is 
performed by some existing compilers. 

Case analysis like that above could be generated 
without training on a testbed. The trace encodes 
simple peephole optimization rules, and there ex- 
ist mechanisms for enumerating such rules without 
training on a testbed [6, 71. These mechanisms are 
immune to training failures, which can cause the 
production system to emit code that is sub-optimal 
(but never incorrect). Experiments have shown that 
training failures are rare [3], and training does have 
advantages. It allows the production system to test 
only rules known to have been useful, and it al- 
lows the code generator generator to sort if-then- 
else chains so that the most common patterns are 
tested first. 

The compiler above gets all of its optimizations 
from a record of replacements made by a retar- 
getable peephole optimizer, but it could easily ac- 
cept rewriting rules from other sources a well. The 
system has already been adapted to accept hand- 
written optimization rules, and it is a natural client 
for rules discovered by exhaustive enumeration [$I. 

Discussion 

Two emerging compilers use the techniques above. 
One uses a modified peel as a front end and has 
largely complete back ends for the VAX and the 
MC68020. The interface between its front end and 
generated code generators is somewhat less efficient 
than that shown above. At present, this compiler 
runs in about 55% of the time taken by peel. The 
other compiler uses a new front end and precisely 
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the code generator shown above. This compiler runs 
in about 20% of the time of peel. In a typical run, 
its time was spent as follows: 

17% scanning 
26% parsing 
37% semantic analysis 

4% node allocation and assignment 
4% rewrite 

4% register allocation 
8% output 

Thus rewrite currently takes less than 1% of the 
time taken by peel. This compiler does not yet ac- 
cept full C, and it has thus not yet been possible to 
process more than a small testbed. Extending the 
language is likely to slow the front end somewhat, 
and incorporating the trace from a full testbed is 
likely to increase the length of the if-then-else chains 
in rewrite. On the other hand, only the scan- 
ner [lo] and code generator have been extensively 
tuned, so improvements are also possible. 

Pennello has described a technique for replacing 
an LR parsing table and its interpreter with equiv- 
alent optimized assembly code [9]. Such techniques 
could be applied to the LR parser used by Graham- 
Glanville code generators [l]. Like rewrite, the re- 
sulting code generator would be hard-coded, though 
differences between the two algorithms would com- 
plicate any assessment of their relative performance 
in the absence of measurements. 
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