October 21, 1995

|nduction Operators and
|ntermediate Forms

Christopher W. Fraser, AT& T Bell Laboratories

600 M ountain Avenue 2C-300, Murray Hill, NJ 07974-
0636, USA. Internet: cwf@research.att .com.

Todd A. Proebsting, University of Arizona

Department of Computer Science, Tucson, AZ 85721, USA.
Internet; toddecs.arizona.edu.

This paper shows significant benefits from small extensions to typical
compiler intermediate representations (IRs). We have added to such an IR
two features that operate on sequences and thus hide simple loops. For
example, we represent matrix multiplication with an expression dag of
about 20 nodes and no explicit control flow. This design simplifies many
optimizations. Examples include a 200-line program that partially evaluates
dags with respect to any subset of their inputs and a tree-matching code
generator that can exploit tuned linear algebra packages. It should be
possible for loop analyzers to retrofit these operators to existing IRs.

1of9



1.0

2.0

Introduction

Introduction

Many compiler optimizationsthat are simple on expression trees— and, in some cases,
even on dags — become much harder in the presence of explicit control flow. For exam-
ple, partial evaluation, which took years to develop for general programs, reduces to
textbook constant folding when control flow isn’t involved.

We have been experimenting with a more economical approach. Rather than invest
heavily in optimizations that handle explicit control flow, we' ve been investigating what
can be gained by minimal changesto the intermediate representation (IR) on which the
compiler operates. We've extended atypical IR to include two operations on sequences.
The R uses dags over the usua arithmetic operators, but it adds two induction opera-
tors adapted from APL [Falkoff and Iverson, in Wexelblat]. One generates a sequence
of values and the other reduces a sequence. It should be possible to introduce induction
operatorsinto the IR of an existing compiler if the language supports array operations or
if the compiler does some loop analysis.

Induction operators don’t hide all control flow, but they can hide simple loops, which
sufficesto simplify some important optimizations. We support this claim with one sam-
ple optimization and outlines of several others. Examplesinclude partially evaluating a
series of dagswith respect to any subset of their inputs, and automatically identifying
subtrees best implemented by calling tuned math libraries.

This paper is about alanguage design. The language happens to involve language imple-
mentation, but the paper is mainly about the design of the language and the rationalefor
the design. L ike most papers about new language designs, this one can’t of fer many
users, programs, or measurements, at least when compared with the more typical papers
about new implementation work for established languages, but even the initial evidence
below makes the case for induction operators.

The Intermediate Language

The demonstration optimizer uses a program that reads dags encoded in afunctional
notation. The usual arithmetic operators work on val ues that originate in a series of
numbered memory cells. Load (x) returnsthevduein cdl x, and store (v, z) copies
the value z into cell v, so the input

Store (0,Add (Load (0) ,1))
represents atree that increments cell 0. The input x=v directsthe program to use y for x
inwhat follows. For example,

N=0
Store (N,Add (Load (N) ,1))

Induction Operators and Intermediate Forms 20f9



The Intermediate Language

generates the dag

and is another input that increments cell 0. Temporaries like N must be set at most once,
so functional, single-assignment semantics apply. The “=" operator above existsto
allow oneto create shared dag nodes, though it may al so be used to present large treesin
pieces. The IR uses a single numeric type; more base types are trivially added, but for
now they’d only clutter experimentsthat focus on other matters, namely control flow.

Each dag isinterpreted in isolation. Each dag must have asingleroot. Each nodein each
dag must from be reachable from itsroot. store may appear only as the root. These
restrictions collaborate to give the dagsfunctiona semantics. Arguments can thus be
evaluated in any order, including in parallel.

The operator Tota (N) (the nameisAPL’S) generates the values O through N-1, inclu-
sive. That is, if adag includesan 1ot a (N) , then the dag is effectively evaluated n times.
Iota may be used only to represent codethat yields the same value regardless of the
order in which 1ota yieldsitsvalues, including evauation in parallel. To smplify mat-
tersfor the reader, all examplesin this paper have 1ota yied its values sequentially.

If adag includes multiple distinct Tota nodes, it is evaluated once for each combination
of the values of each generator. For example,

Mul (Iota(3) ,Itoca(4))

generates the dag

and yields not just one value but rather generates the sequence

000O0O0123024°%s

which is easier to read like this:

o O O
N H O
=N O
o W o

Induction Operators and Intermediate Forms 30of9



The Intermediate Language

Multiple Tota nodes may be used only to represent code that yields the same value
regardless of the order in which the T1otas combine. For example, the code that usesthe
sequence above must accept any permutation of the sequence.

If agenerator is used more than oncein adag, it isgenerated only once, and each user
getsthevalues asif in parallel. For example,

I=Iota (3)
Mul (I, I)

buildsthe dag

and generates the sequence

01 4

Our generator semantics come from Icon [Griswold and Griswold]. Indeed, replace
each “=" above with “:=", separate the assignmentswith “&”, embed the result in a
“every write(...)”, and link in the primitives (e.g., Mul), and the resulting I con program
generates and emits the values requested. Outside Icon, Tota could be implemented
with coroutines, but the restrictions on the semantics exist to permit simpler choices.
Options include a stack of live generators or asingle loop nest, with each generator in
the dag defining one loop.

Iota can't replace arbitrary control flow, but it can replace simple loops. For example,
the inner loop of a standard matrix multiplier is

b= ? b
N OB O

K=Iota (N)

Aik=Load (Add (A,Add (K, Mul (N, I))))
Bkj=Load (Add (B,Add (J,Mul (N,K))))
Addends=Mul (Aik, Bkj)

which generatesin addends the sequence of values that, when summed, yield position
(1,9) in the product of the 2 by 2 (row-major, zero-origin) matrices A and B, which are
stored at locations 0 and 4. For the time being, | and J are free variables.

The dag operator Reduce (F, x) exhaustsall generatorsin x and yields ascalar. F must

be a binary operator with an identity. If x generates nothing, Reduce yields F'sidentity.
Otherwise, Reduce (F,X) = F (First (X) ,Reduce (F,Rest (X)) ). For example,

Induction Operators and Intermediate Forms 40f 9



3.0

Partial Evaluation

Reduce (Add, Iota(4))

yields the scalar value 0+1+2+3=6. A ppending

Cij=Reduce (Add,Addends) )

to the matrix multiplier begun above completes the inner loop, and appending

I=Iota (N)

J=Iota (N)

C=8

Dest=Add (C, Add (Mul (I,N),J))
Store (Dest, Cij)

completes the matrix multiplier.

The|R above starts with conventional low-level operators and adds two operators.
Without Tota and Reduce, each dag represents a constant number of instructions. With
Iota and Reduce, adag can easily replace many nested loops. They can't represent all
control flow, and they can’t represent even asimple loop with one conditional inside, so
many |oops must still be represented conventionally. They can, however, represent
many inner loops in many computationally intensive codes and trivialize some other-
wise costly optimizations.

Partial Evaluation

Partial evaluation s, at least for the purposes of the augmented dagsin this paper,
roughly equivalent to symbolic simulation and to constant propagation plus constant
folding and loop unrolling.

Partial evaluation of dagsissimple. Tota and Reduce complicate matters alittle, but
the cost isfar less than implementing full partial evaluation. A 200-line Icon program
reads the input described in the last section, compiles it into dags, partially evaluates
them, and emits an |con program that performs any remaining computations when the
rest of the inputs become known. Indeed, the partial evaluator could be regarded as a
partid evaluator for alimited subset of |con expressions.

Consider the definition of aik in the previous section. If we present

A=0

N=2

K=Iota (N)

Aik=Load (Add (A,Add (K,Mul (N, I))))

the partia evaluator builds the dag below. (In practice, the program needsto know the
identity for each operator, so it replacesthe add (o0, x) withx.) Aslongas1 remainsa
free variable, simple examination of the dag shows that the only subdag that can be
completely evaluated is the one rooted at the Tota. That the Tota generates multiple
valuesisimmateria so long as the complete set of values isknown. The partial eva ua-
tor emits

Induction Operators and Intermediate Forms 50f9



Partial Evaluation

Load (Add(0,Mul (2,1I)))
Load (Add(1,Mul (2,I)))

Again, the redundant addition of zero isremoved but included above because the paral -
lel construction makes the example easier to understand.

The two-dag input bel ow helps demonstrate the full power of this simple partial evdua-
tor. Thefirst dag copies 0-7 into the first 8 cells of memory, and the second multiplies
the 2-by-2 matrices starting at locations 0 and 4 and leaves the result in the cell s starting
at 8.

Mem=Iota (8)
Store (Mem,Add (1, Mem) )

N=2

k=Iota (N)

Aik=Load (Add(0,Add (Mul (N, I),K)))
Bkj=Load (Add (4,Add (Mul (N,K) ,J)))
Cij=Reduce (Add,Mul (Aik,Bkj))
I=Iota (N)

J=Iota (N)

Store (Add (8,Add (Mul (N, I),J)),Cij)

With this input, all argumentsto the matrix multiplier are known, so the partia evalua-
tor does the complete computation a compile time and emits

Store(8,19)
Store(9,22)
Store (10,43)
Store (11,50)

If wereplacethedigit 8 with 7 in thefirst line for the first dag, however, the lower right
corner of the second matrix is unknown, which meansthat the partial eval uator can now
compute only the first result column at compile time. It emits code to finish the ca cula-
tion when the last part of the input becomes known at execution time:

Store(8,19)
Store (9,Add (6,Mul (2,Load(7))))

Induction Operators and Intermediate Forms 6 of 9



4.0

Math Libraries as “Instructions”

Store (10,43)
Store (11,Add (18,Mul (4,Load (7)) ))

Math Libraries as “Instructions”

It iswell known that atree-parsing, dy namic-programming code generator can emit
optimal loca code for expression trees [Aho and Johnson], but few applications have
used expression trees with implicit control flow because few target machine instructions
offer implicit loops. Math libraries tuned for the memory hierarchy or pipeline or both,
however, present larger “ primitives’ that are increasingly important. Without induction
operators, no simple way is known to automatically introduce such library callsinto
generated code, unless the programmer had the knowledge to place them there in the
first place. With induction operators, this problem has a textbook solution.

For example, the tree grammar [Aho, Ganapathi, and Tjiang; Fraser, Henry, and Proeb-
sting] below recognizes loops that can be implemented by the inner-product routinesin
the Level 1 BLAS library [L awson, Hanson, Kincaid, and Krogh].

induct: Iota(scalar)

induct: Add (induct, constant)

induct: Mul (induct, constant)

scalar: Reduce (Add,Mul (Load (induct) , Load (induct)))

Thefirst line notes that an Tota node generates a sequence corresponding to an induc-
tion variable. The next two lines note that one induction variable plus or times a con-
stant yields another induction variable. Thelast line identifies inputsthat fit the dot-
product template. Each rule would need an attribute equation or semantic action. For
example, the last rule above would need an action to emit the call on an inner-product
routine.

Some rules would also need a cost function. For example, the last rule abovewould use
acost function that confirmsthat the two embedded induction variables are “dagged’
and share one Iota, because dot products use oneloop, not two. If they are, then the
cost function would estimate the cost of the tuned implementation of the library routine.
If, for example, software pipelining has reduced the average cost per iteration to, say,
six cycles, then the cost for this rule should be six times the number of iterations or or
some compile-time estimate of it.

The cost functions can reject the rule — for example, if the two embedded induction
variables above aren’t shared — by returning an effectively infinite value, which forces
the tree parser to choose other, presumably more general and thus more costly, rulesto
cover these nodes. For example, the rules

scalar: Reduce (Add, expr)
expr: induct

expr: Mul (expr, expr)
expr: Load (expr)

Induction Operators and Intermediate Forms 7 of 9



5.0

6.0

7.0

Other Applications

combine to give an alternate match for dot products, but the costs associated with these
rules should add up to more than six cycles per iteration, because thisloop is assembled
from individual instructions and doesn’t benefit from tuning.

It may be possible to recast the partid evaluator as atree parser in the style above.

Other Applications

Without induction operators, atypical dag represents perhaps a few tens of instructions
between side-effects. With induction operators, dags can represent thousands of instruc-
tions without explicit side-effects. These properties should benefit a variety of optimiza-
tions:

e Cache optimizations such as blocking benefit from advance information about the
coming sequence of memory references and from permission to reorder some refer-
ences. Dags with induction operators represent this data compactly and functionally.

e |nstruction scheduling and software pipelining might be simpler on asingle, uniform
representation for loop nests and basic blocks.

e Optimizersthat automatically introduce parallelism need to partition and reorder
computations. Induction operators make some dags “big enough” to partition profit-
ably, and they explicitly identify at least some permitted reorderings.

Related Work

IR induction operators borrow heavily from APL [Fakoff and Iverson, in Wexelbl at].
They also appear in some later languages (e.g., Matlab, HPF) that may be better known
in some communities.

Vcode [Blelloch and Chatterjeg] is another IR that borrows from APL, but it differs
from oursin many important ways. For example, V code targets the full range of modern
supercomputers and thus supports far more vector operators, dynamic alocation of vec-
tors, and even nested parallelism. It is a complete IR for vectors, where ours is among
the smallest plausible subsets and can be of use even in less ambitious compilers for
uniprocessors. Both ends of the spectrum merit study. VVcode is far more powerful, but
ours might be easier to work into an existing C or Fortran compiler, because it is small,
it adds no datatypes, and existing compiler anaysis phases can identify and introduce its
limited extensions.

Bibliography

Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation using
tree matching and dynamic programming. ACM Transactions on Programming Lan-
guages and Systems 11(4):491-516, October 1989.

Induction Operators and Intermediate Forms 80of9



Bibliography

Guy E. Blelloch and Siddhartha Chatterjee. VCODE: A data-parallel intermediate lan-
guage. Processings of the Third Symposium on the Frontiers of Massively Parallel Com-
putation:471-480, 1990.

Adin D. Fdkoff and Kenneth E. Iverson. The evolution of APL. In [Wexelblat], 661-
674.

Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG — Fast opti-
mal instruction selection and tree parsing. SSGPLAN Notices, 4/92.

Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice
Hall, second edition, 1990.

Stephen C. Johnson and Cleve Moler. Compiling Matlab. USENIX Very High Level
Languages Symposium: 119-127, 1994.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprogramsfor
Fortran usage. ACM Transactions on Mathematical Software 5:308-325, 1979.

Richard L. Wexelblat. History of Programming Languages. Academic Press, 1981.

Induction Operators and Intermediate Forms 90f9



