
Editing Data Structures

CHRISTOPHER W. FRASER and A. A. LOPEZ

The University of Arizona

Text is not the only data that needs editing. For example, interactive debuggers edit data structures
internal to running programs. This paper describes eds, a generalized editor that allows users to edit
arbitrary data structures. Examples show eds maintaining simple databases, editing LISP S-expres-
sions, debugging SNOBOL4 programs, and creating and modifying data structures for a computer
graphics system.

Key Words and Phrases: data structures, debuggers, text editing
CR Categories: 3.73, 4.42, 4.49

1. INTRODUCTION

Editing means examining and modifying data. Though most editing programs
edit text files, other data structures need editing too [15]. For example, interactive
debuggers edit data structures internal to running programs [3], L ISP editors edit
L ISP ' s arbitrarily nested lists [11, 14], and miscellaneous ad hoc utilities edit such
databases as calendars, gradebooks, and accounting files. This paper describes
eds, a program that edits arbi t rary combinations of vectors, binary trees, linked
lists, records, character strings, symbol tables, and other data structures, eds has
been used in program debugging, database manipulation, and data reformatting.
eds is writ ten in SNOBOL4 and edits SNOBOL4 data structures. Most program-
ming languages can support some form of eds, and similar techniques can edit
more permanent "external" data structures such as file system directories [4].
Section 2 presents ed s through simple examples, Section 3 describes some
applications, and Section 4 discusses implementation.

2. THE EDITOR

The command syntax of eds is borrowed from the line editor ed [7, 8]. Commands
begin with indices tha t select components of the data structure, just as line
numbers select lines of text for a conventional text editor. Indices are terminated
with a period, and two (or more) indices may be concatenated to select a
component of a component . In other respects, the syntax of indices varies
according to the type of data structure. For example, integers index vectors, field

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permi~ion.
Authors' addresses: C. W. Fraser, Department of Computer Science, The University of Arizona,
Tucson, AZ 85721; A. A. Lopez, Computer Services Center, University of Minnesota, Morris, MN
56267.
© 1981 ACM 0164-0925/81/0400-0115 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981, Pages 115-125.

cwfraser
Note
© ACM, 1981. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Programming Languages and Systems, {3, 0164-0925, (1981)} http://doi.acm.org/10.1145/357133.357134

1 16 Christopher W. Fraser and A. A. Lopez

names a n d integers index records, and strings index symbol tables. Thus if eds
is editing, say, a class gradebook stored as a vector of records each with a name,
number , and score field, then the index list

1.name.

might address the n a m e field of the first record, 1 the index list

1.

addresses the entire first record, and the null index addresses the entire vector.
The reserved index "$" addresses the last element of any data structure for which
a last element is defined (e.g., vectors, but not symbol tables). For example,

$.name.

addresses the n a m e field of the last record of the gradebook.
The index list, if any, is followed by a one-character command and optional

argument:

a expr inserts an item containing expr after the indexed item
c expr changes the addressed item to contain expr

d deletes the addressed item
p prints the addressed item

The interpretation of these commands, like the interpretation of indices, depends
on the data structure. For example, items cannot be inserted in or deleted from
static-length records, items are not inserted "after" anything in unordered symbol
tables, and items are added to the beginning of linked lists by being inserted at
the otherwise illegal index 0. Similarly, different data structures are printed
differently. For example,

1 .name.p

simply prints the n a m e field of the first gradebook record, whereas

1.p

prints the entire record, separating fields with colons:

J. Adams:123456:50

and

P

1 For readers cur ious about details, th is c o m m a n d is appropr ia te for a vector of records bu t not for a
vector of poin ters to records, where the index

1.

would select the f'wst pointer, t he index
1,.

would select the record to which it poin ts (the second index is null because poin ters have only one
c o m p o n e n t to select), and the index

1 . . n a m e .

would select t ha t record 's n a m e field. S N O B O I A relies less on explicit poin ters t h a n does, say,
PASCAL, so th is detail would be more impor tan t in a P A S C A L - b a s e d eds .

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Editing Data Structures 1 1 7

prints (a template for) the entire vector of records:

ARRAY(30)

Structure-dependent routines process single indices and the commands de-
scribed above. A single structure-independent driver assigns duties to these
routines and interprets the data-independent features described below.

2.1 Sequenc ing

Two numeric indices separated by a comma specify a range of indices to which
the command is to be applied. For example,

1,$.name.p

prints all names in the gradebook database, and

$.2,3.p

prints fields 2 and 3 of the last record in the gradebook.

2.2 Relative Indexing

Conventional index arithmetic is provided, and the reserved index "@" abbrevi-
ates the last index used so that complex indices need not be retyped. For example,

@ - l , @ + l . p

prints the last item addressed surrounded by its immediate neighbors and then
sets "@" to index the last item printed. With the binary tree editor, which
numbers its nodes thus:

1 / \
2 3
/\ /\

4 5 6 7

multiplication and division are also useful:

@/2 .p prints the last node's ancestor
@*2.p prints its left descendant
@*2+ l . p prints its right descendant
@ _ 1.p prints its sibling

"@" may hold multicomponent indices. For example, after the command

1.2.3.p

" 6 " is 1.2.3 and

is then equivalent to

@.4.p

1.2.3.4.p

Appending "I" to an index deletes its last component. For example, if " 6 " is
1.2.3, then "@|" is 1.2 and " @ | | " is 1. Thus "@" and " | " may be used to move
up and down a tree in small steps.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

1 18 Christopher W. Fraser and A. A. Lopez

An empty command line is equivalent to the command

@+l.p

so the user can step through a sequential data structure by striking carriage
returns.

The " = " command evaluates and then echoes its index. For example,

@.--

prints the index of the last node indexed, and

$.--

prints the length 6f a vector, record, or linked list.

2.3 Content-Sensitive Indexing

The index
?pattern?

is equivalent to the index of the next node (starting from "@") that, if printed,
contains the string pattern. For example,

? B u c h a n a n ? . p

finds and prints Buchanan's gradebook record. Context-sensitive indices may
appear wherever simpler indices may be used. For example,

?F i l lmore? + 1 , ? H a m i l t o n ? - 1.p

prints gradebook records starting with the one after Fillmore's and ending with
the one before Hamilton's. eds currently searches only structures with numeric
indices, because the indices of other structures cannot be enumerated in a
structure-independent fashion. An earlier implementation used structure-depen-
dent primitives like CLU's "iterators" [9] to search arbitrary structures.

2.4 Changing the Focus

Like text editors that allow users to "open" a new t-fie, eds allows users to "open"
a new structure, with the e command. Thus, someone probing an interrupted
SNOBOIA program can open any variable to look for bugs. For example,

e x

starts editing variable x. If subsequent examination implicates variable y[i], a

e y[i]

will shift the focus there. The focus is not the same as "@". The focus corresponds
to a line editor's "open file," and "@" corresponds to a line editor's "current line."
The argument to the e command must be a SNOBOL4 variable name.

The focus is initialized to the name of an anonymous variable so that the user
may begin creating a structure without an initial e command. For example, the
initial sequence

c ARRAY(30)
1.c student("J. Adams")
2.c student("C. Arthur")

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Editing Data Structures 1 19

changes the initial focus to a new heterogeneous vector returned by the SNOBOL4
built-in function ARRAY and then creates a new gradebook in this array.

2.5 Accessing Files

The r and w commands access the file system:

r file inserts lines from f i le after the indexed node
w file prints the indexed node(s) into f i le

For example,

c l ist()
0.r g r a d e b o o k
1.d
1,$.w g r a d e b o o k

starts editing a new (empty) linked list, reads file g r adebook into it, deletes the
first line, and writes it back out.

Theoretically, the r and w commands allow eds to be used as a conventional
line editor, though an editor tailored to the manipulation of text files is likely to
be more facile. Note that, while most line editors offer separate command
sublanguages for inter- and intra-line editing, eds offers both styles with a
common, if somewhat verbose, command language:

3.c " x y z "

replaces the entire third line, and

3.4.c " x y z "

replaces only its fourth character (with a three-character sequence).

3. APPLICATIONS

In addition to editing such self-contained databases as the gradebook shown
above, eds can operate on data created by or for other software systems. The
following sections show eds editing LISP S-expressions, debugging SNOBOL4
programs, and creating and modifying data structures for a computer graphics
system.

3.1 A LISP Editor

When loading eds into a SNOBOL4 system, the user may supply additional
routines to extend its capabilities. For example, by supplying eds with a function
sexpr that accepts LISP S-expressions like

(cond ((gt x 0) 1) (t - 1))

and returns their standard representation as nested linked lists, the user creates
a LISP editor. The command

c sexpr (" (cond ((gt x 0) 1) (t - 1)) ")

creates and starts editing the S-expression above;

1.a sexpr (" ((l t x 0) - 1) ")

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

120 Christopher W. Fraser and A. A. Lopez

changes it to the S-expression

(cond ((l t x 0) - 1) ((g t x 0) 1) (t - 1))

and

changes t ha t to

$. 2 . c 0

(cond ((l t x 0) - 1) ((gt x 0) 1) (t 0))

Thus , a version of e d s wri t ten in L I S P - - w h i c h migh t even be able to use L I S P
as its c o m m a n d l anguage- -cou ld serve as an S-expression editor. Of course, a
special-purpose S-expression editor [14] can offer more list-specific fea tures t han
e d s because it need not concern itself with o ther da ta s tructures.

3.2 A SNOBOL4 Debugger

Addit ion of a facility for t rapping errors and, perhaps , p rogrammer -de f ined events
turns e d s into an interact ive debugger for finding errors in complex da ta struc-
tures. I f the user loads e d s with the p rog ram to be debugged and ar ranges for
eds to get control when the SNOBOL4 in te rpre te r finds an error, e d s m a y be
used to look for bugs in da ta s tructures. Consider an object code opt imizer wr i t ten
in SNOBOL4 tha t represents object p rograms as doubly- l inked lists of instruc-
tions, with extras: Labels are inser ted be tween some instructions, extra links
represen t control flow, and dead variable lists are a t t ached to each node. To
examine the fifth instruction, the user types

5.p

whereas the user of a convent ional SNOBOL4 debugger [5] types someth ing like

value(next(next(next(next(top)))))

T h e e d s user s tr ikes a carriage re tu rn to see the next ins t ruct ion where the user
of a convent ional SNOBOL4 debugger types someth ing like

value(next(next(next(next(next(top)))))) 2

To insert or delete a node with a convent ional debugger requires explicit pointer
manipulat ion, which, if bungled, could compromise the integr i ty of the object
program; with eds , the a and d com m ands are shorter , and, like language-specific
editors t ha t will not create syntact ical ly- incorrect p rograms [13], e d s ' list edi tor
will not create incorrect ly l inked lists (e.g., wi th dangling pointers). Finally, e d s
offers some operat ions offered by few convent ional debuggers:

?x4:?+l.p

prints the instruct ion af ter label x4, and

1 ,$.w bugs

2 The user might simulate "@" by assigning a long expression to a variable, but this device may
interfere with the variables of the program being debugged.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Editing Data Structures 121

hc

qc

'1 list I I I '1 list I [I I

1
I ,otate [90 I

'1 list r l l r '1 list I l l I

I po~t I1 10 I

'1 ,ist I L~

I point W71 17' I I po~t r0 I1 I
Figure 1

records the current state of the object program in a file for subsequent examina-
tion. Integrating eds' facilities into conventional debuggers benefits both.

3.3 A Graphics Editor

eds also accommodates heterogeneous structures. Consider a simple computer
graphics system that allows users to create and edit simple hierarchical pictures.
A picture is represented as an arbitrarily nested list of (1) points to be connected
with lines and (2) commands to scale, rotate, or translate subsequent and
subordinate points. For example,

e qc
c l i s t (point(l , 0))
$.a point(.71, .71)
$.a point(O, 1)

creates a two-stroke approximation to the unit quarter-circle in the first quadrant
and assigns it to the variable qc. Similarly,

e hc
c list(qc)
$.a rotate(90)
$.a qc

creates a semicircle out of two quarter-circles, one rotated into the fourth
quadrant. The resulting structure, including type codes, is shown in Figure 1.

In practice, this structure would be only part of a much larger picture. For
example, these pictures might be used to defme logic gates: an AND gate (D) is a
semicircle and a vertical stroke, a NAND gate ([~) is an AND gate and a shifted,
reduced circle, which is, in turn, two semicircles, one reflected about the y-axis,
etc. Though such structures quickly grow complex, eds can edit them without
much difficulty if the user has included sufficient entry points (e.g., qc, hc). For
example,

e qc
2.c point(.87, .5)
2.a point(.5, .87)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

122 Christopher W. Fraser and A. A. Lopez

changes all quarter-circles, including those that comprise hc, to use a three-stroke
approximation, and

e hc
2.c scale(l , - 1)

replaces the ro t a t e command in each semicircle with a scale command that is
more efficient at producing fourth-quadrant quarter-circles from first-quadrant
quarter-circles; it does so without changing the constituent quarter-circles. Again,
a special-purpose graphics editor [10] may be more appropriate than eds, but
some structure editor is needed to correct the errors that occur when building
such complex structures.

4. IMPLEMENTATION

4.1 A SNOBOL Implementation

eds is written in the SPITBOL dialect [2] of SNOBOIA. It is a single data-
independent driver--about 100 lines of code--that assigns duties to several small
structure-dependent slave editors, typically 5-25 lines each. (In languages such as
ALPHARD [12], CLU [9], and SIMULA [1], these slaves might form part of the
datatype definition, providing a simple editor for all values of that type.) The
driver interprets the data-independent features of eds (e.g., index arithmetic,
"@"-replacement). The slaves process isolated indices and simple commands.
The rest of this section describes this organization in more detail.

The list editor EdList outlined in Figure 2 is a typical slave. It accepts a
command and a pointer to a list represented as a record with two fields: a value
and a pointer to another such record. It contains the code to insert an item, delete
an item, change and print lists as a whole, compute the length of the list, and find
the nth value in a list.

As Figure 2 shows, the organization of lists induces an asymmetry into the list
editor that is invisible to the user but that must be addressed by the implementer.
An item in a list can be changed or printed by changing or printing some isolated
field, so the list editor implements these commands by computing a pointer to
the indexed field and then passing this pointer to a slave that will finish the
command. On the other hand, inserting or deleting an item in a list requires
pointer manipulations that only the list editor understands, so the list editor
interprets both the index and command character for these commands. In general,
the slaves interpret that which only they can interpret and ask the routine Next
to invoke a slave to interpret the rest.

Next (also in Figure 2) simplifies the next component (up to the next period)
of the command's index (if there is one) and calls Dispatch (also in Figure 2) to
select the appropriate slave to continue the interpretation of the command. It
interprets " = " commands itself, it replaces "$" indices by asking a slave (using
an I command) for the length of the structure, it searches structures by printing
them into a temporary variable and comparing the result with a pattern, it
evaluates arithmetic expressions, and it expands sequences (the comma operator)
by calling Dispatch with a sequence of single-index commands.

The remainder of eds is straightforward. A main routine repeatedly reads
commands and passes them to Next through a routine that substitutes the last

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Editing Data Structures 123

procedure Next (cmd, ptr)
i f cmd = "--" then

print the value of "@"
else i f emd does not begin with an index t h e n

call Dispatch to interpret the command
else

let x be the first component of emd's index
if x contains a "$" t h e n

call Dispatch with an 1 command to learn the length of this structure and replace each
"$" in x with the result

i f x contains a ?pattern? t h e n
use p commands with output redirected into a temporary to enumerate the elements of
the current structure starting with the component of "@" that corresponds to x, and
stopping when a string returned matches pattern. Replace ?pattern? in x with the index
of the element that matched pattern

i f x contains any arithmetic operators t h e n
replace any expressions in x with their values

i f x is two numbers, n l and n2, separated by a comma t h e n
for i := n l to n2 do

call Dispatch with i and the rest of cmd
else

call Dispatch with x and the rest of cmd
append x to the new value of "@"

procedure Dispatch(cmd, ptr)
case type of the value at which ptr points of

Array: EdArray(cmd, ptr)
List: EdList(cmd, ptr)
Record: EdRecord(cmd, ptr)
String: EdString(cmd, ptr)
Table: EdTable(cmd, ptr)
Tree: EdTree(cmd, ptr)

procedure EdList(cmd, ptr)
i f cmd matches number.a expr t h e n

link a new node holding expr into the list after node number
else if cmd matches number.d t h e n

relink node number - 1 to point at node number + 1
else i f cmd matches c expr t h e n

replace the entire list with expr
else if cmd matches I t h e n

compute and return the length of the list
e l se if cmd matches p t h e n

print the template "List"
e lse if cmd starts with a number n t h e n

call Next with the remainder of cmd and a pointer to the value field of the n th node in the list
e lse error

Fig. 2. An overview of the implementation of eds.

i n d e x s e e n f o r " @ " a n d t h a t r e p l a c e s r a n d w c o m m a n d s w i t h e q u i v a l e n t , s i m p l e r

c o m m a n d s : r c o m m a n d s a r e s i m u l a t e d w i t h a s e r i e s o f

@ + l . a a

3 An item inserted after item n becomes item n + 1, so the a command's "+1" is needed to insert the
file's line m + 1 after line m.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

124 Christopher W. Fraser and A. A. Lopez

commands, and w commands are simulated by redirecting i/o to a file and then
executing an equivalent p command.

eds is normally invoked as a stand-alone program and used to create, edit,
read, and write structures. It may be loaded with additional routines (e.g., sexpr
of Section 3.1) that further simplify editing. It may also be loaded with another
program and used as a debugger by explicitly calling its command interpreter
from the program to be debugged or by arranging for eds to intercept errors [5].

4.2 A Compiled Implementation

Because SNOBOL4 is more convenient than usual, the implementation of eds in
a more conventional language like PASCAL deserves consideration. Compilation
complicates expression evaluation but does not preclude it. eds constructs and
evaluates expressions on the fly in only two places: when evaluating numeric
index expressions and when evaluating the expressions on the end of a, c, and e
commands. The first case is easily interpreted in PASCAL, and the second can
be approximated by an interpreter that allows the user to give simple expressions
involving, say, only addition and subtraction of scalar variables and numeric and
address constants. One can, of course, interpret a larger class of expressions if one
is willing to code a larger interpreter.

Block structure and static typing complicate many programming environments.
Block structure may make it expedient to restrict symbol table access to just
global and immediately local variables, and static typing may force users to
identify types explicitly. However, such problems are not peculiar to eds; all
debuggers for such languages suffer from them. eds should also have some way
to exploit PASCAL's dynamic memory allocation, but, at least for structures like
lists and trees, garbage collection can be avoided because eds knows when a node
is being deleted and can free it explicitly.

The resulting debugger may even apply to several languages, because languages
that are similar enough to share a subroutine library should be similar enough to
share data formats and, hence, an editor that understands those formats. Indeed,
the presence of a structure-editing utility, like the presence of a subroutine
library, may encourage some regularity of data formats among similar languages.

5. FUTURE WORK

eds is an experimental editor. It has not been exhaustively tested or documented,
it lacks some important features (e.g., backward searching, global replacement),
and many users would prefer a more concise command language.

One of the most challenging extensions involves display-based [6] structure
editing. A predecessor of eds [4] was display-based but was restricted to structures
that could be presented as lists of strings. This restriction is not easily removed.
There are so many ways to display complex structuresqtrees, for example, may
be displayed with boxes and arrows, or indentation, or parentheses--that the
editor must handle both variable structures {like eds) and variable display
formats. Current work on eds is addressing this problem with an editor parame-
terized by a translation grammar. Syntax rules define the structure, and semantic
actions define the display format.

Programs like eds blur the distinction between editing and programming. Since
eds is more than a conventional editor but less than a conventional programming
ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

Editing Data Structures 125

language, it is natural to wonder if there are o ther useful processors to be
discovered in this gray area and if some of t hem are suited to editing and
programming. If such processors can be found, they might make editors more
powerful and programming environments easier to code and easier to learn.

ACKNOWLEDGMENT

The referees made many useful suggestions.

REFERENCES

1~ BIRTWlSTLE, G.M., DAHL, O.-J., MYHRHAUG, B., AND NYGAARD, K. SIMULA BEGIN. Petro-
celli, 1973.

2. DEWAR, R.B.K., AND MCCANN, A.P. MACRO SPITBOL--A SNOBOL4 compiler. Softw. Pract.
Exper. 7, 1 (Jan. 1977), 93-113.

3. DIGITAL EQUIPMENT CORP. DDT--Dynamic Debugging Technique. Publ. DEC-10-UDDTA-A-
D, 3d ed., Maynard, Mass., 1974.

4. FRASER, C.W. A generalized text editor. Commun. ACM 23, 3 (March 1980), 154-158.
5. HANSON, D.R. Event associations in SNOBOL4 for program debugging. Softw. Pract. Exper. 8,

2 (March 1978), 115-129.
6. IRONS, E.T., AND DJORUP, F.M. A CRT editing system. Commun. ACM 15, 1 (Jan. 1972), 16-20.
7. KERNIGHAN, B.W. A tutorial introduction to the UNIX text editor. Tech. Rep., Bell Labs.,

Murray Hill, N.J., 1978.
8. KERNIGHAN, B.W., AND PLAUGER, P.J. Software Tools. Addison-Wesley, Reading, Mass., 1976.
9. LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Abstraction mechanisms in CLU.

Commun. ACM20, 8 (Aug. 1977), 564-576.
10. NEWMAN, W.M., AND SPROULL, R.F. Principles of Interactive Computer Graphics, 2d ed.

McGraw-Hill, New York, 1979.
11. SANDEWALL, E. Programming in an interactive environment: The LisP experience. Comput.

Surv. (ACM) 10, 1 (March 1978), 35-71.
12. SHAW, M., WULF, W.A., AND LONDON, R.L. Abstraction and verification in Alphard: Defining

and specifying iteration and generators. Commun. ACM 20, 8 (Aug. 1977), 553-564.
13. TEITELBAUM, T. The Cornell Program Synthesizer: A syntax-directed programming environ-

ment. SIGPLAN Notices (ACM) 14, 10 (Oct. 1979), 75.
14. TEITELMAN, W. Interlisp Reference Manual. Xerox PARC, Palo Alto, Calif., Oct. 1978.
15. VAN DAM, A., AND RICE, D.E. On-line text editing: A survey. Cornput. Surv. (ACM) 3, 3 (Sept.

1971), 93-114.

Received January 1980; revised June and September 1980; accepted November 1980

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 2, April 1981.

