RETROSPECTIVE:

Automatic Generation of Peephole Optimizations

Jack W. Davidson

Department of Computer Science
University of Virginia
Charlottesville, VA 22904
jwd@virginia.edu

This paper was the last in a series about the retargetable
peephole optimizer PO, and it was the only one to appear in a
PLDI/CC conference. PO is perhaps best known for its influence
on GCC [Stallman], a compiler with many targets and wide use.

Peephole optimizers [McKeeman 1965] scan object code for
instruction sequences that can be replaced profitably with better
sequences. For example, the source code

i=j; if >0 .
might compile into

move j,i

test i

bne L1
On machines that set the condition codes or flags as a side effect
of the move, the test is redundant. Even if the code generated for
the source statements is flawless in isolation, the optimal
fragments can be suboptimal when juxtaposed. Despite decades
of progress of code generation, most compilers still rely on
peephole optimizers to clean up some patterns.

Peephole optimizers can be very fast: the Bliss-11 peephole
optimizer [Wulf] is said to have run in “negative time” because
it discarded code faster than it could be formatted and emitted.
Such optimizers required, however, programmers to scan object
code, identify the inefficient patterns, and write code to locate
and replace each pattern.

PO replaced these manual steps by using a formal specification
of the instructions of the target machine. A bi-directional
translation grammar converted assembly code into register
transfers that made the effect of each instruction explicit. For
example, the translation of the move instruction above might be
mEil=mLj]1; NE=(m[§]1!'=0); GT=(mLj]>0);
PO simulated runs of register transfers symbolically, using a
process akin to a primitive form of abstract interpretation. It then
attempted to translate the combined effect back into assembly
code. If successful, it then replaced the original run with the
shorter singleton, thus accomplishing the peephole optimization.

Register transfers represent target-specific instructions in a
target-independent form and thus allow machine-independent
optimizers to analyze and manipulate machine-dependent code.
This feature, combined with PO’s ability to check a modified
instruction against a machine specification, significantly reduces
machine-specific code and has proven to be a major benefit to
retargetable compilers.

PO’s thoroughness made it practical to use a naive code
generator to emit “worst case” code, because PO cleaned up the

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 $5.00

ACM SIGPLAN 104

Christopher W. Fraser

Microsoft Research
One Microsoft Way
Redmond, WA 98052
cwfraser@microsoft.com

code as a special case of the peephole optimizations that it was
doing anyway. In time, a common sub-expression eliminator
was added to PO, and the peephole-optimization phase was
labeled “Combiner.”

PO was, however, not fast, but the PLDI/CC paper in this
retrospective demonstrated a way to memo-ize the process in
rewrite rules for a faster peephole optimizer, HOP. For example,
the replacement above might create the rule

move %1,%2

test %2

move %1 ,%2
The percent-digit pairs denote wild-card patterns.

There were four papers about PO, though three have both
conference and subsequent journal versions. The first was about
the grammar-driven peephole optimizer [Fraser 1979; Davidson
and Fraser 1980]. The second added common sub-expression
elimination [D&F 1982; D&F 9/84]. The third demonstrated
how PO allowed the use of naive code generators [D&F 10/84].
The last added HOP [D&F 6/84; D&F 1987]. Other approaches
to specification-driven peephole optimizers have also been
devised and published [Giegerich; Kessler 1984; Kessler 1986].

In 1985, Richard Stallman and Len Tower requested information
about PO, and Fraser sent them a (9-track!) tape containing the
University of Arizona’s source distribution of the Y compiler
[Hanson 1981; Davidson 1981], which included PO. Our
implementation of PO was a research prototype, not a
production tool, so we understood that it was useful mainly as a
guide and that the code itself did not become part of the GNU C
compiler. GCC ultimately encompassed many more
optimizations, but PO’s machine descriptions, register transfers,
simulation-driven peephole optimizer, and even the name
“Combiner” survive in GCC today.

Research on compilers that use register transfers and peephole
optimization as a code generation methodology continues to this
day. In the late 1980’s, there were research efforts that addressed
one of the deficiencies of the original PO and HOP—slow
compilation speed. In PLDI’88, Fraser and Wendt described a
system that uses a peephole optimizer to produce code
generation patterns that are compiled into a fast, integrated code
generator [Fraser and Wendt]. Davidson and Whalley described
an approach for quickly building compilers where classical
peephole optimizer rules are compiled into directly executed
code resulting in a very fast compiler [Davidson and Whalley].
McKenzie discussed several techniques used to speed up the
peephole optimizer in the Amsterdam compiler kit [McKenzie].

At about the same time as the start of the development of GCC,
the development of another widely used retargetable optimizing
compiler infrastructure began. The Very Portable Optimizer

Best of PLDI 1979-1999

cwfraser
Note
© ACM, 2004. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM SIGPLAN Notices Special Issue, Twenty Years of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 1979-1999, A Selection, {34, 0362-1340, (April 2004)} http://doi.acm.org/10.1145/989393.989407

(VPO) developed at the University of Virginia uses register
transfers as its sole intermediate representation, and it makes
substantial use of a PO-style peephole optimizer throughout the
optimization process [Benitez 1994; Benitez and Davidson
1994]. VPO has been used as a research infrastructure for a wide
variety of systems research, and it has been used to build several
successful commercial compilers.

Researchers have used VPO as a vehicle for code generation and
optimization research in a variety of contexts and for a variety of
different machine architectures. VPO has been used within the
real-time community for timing analysis and cache performance
[Healy et al; White et al; Mueller and Whalley 1995].
Researchers have used VPO to develop optimization algorithms
for reducing the impact of branches in code [Yang et al; Mueller
and Whalley 1992; Uh and Whalley], to develop and evaluate
optimizations to exploit emerging microarchitecture features
designed for high-performance [Benitez and Davidson 1991;
Davidson and Jinturkar], and as a infrastructure for binary
translation [Cifuentes and Van Emmerik]. Recently VPO has
been used to develop optimizing compilers for DSP and network
processors [Jung and Paek; Kim et al].

VPO has been used to build several commercial compilers. In
1985, it was used to build one of the first validated Ada
compilers. This compiler targeted Concurrent Computer
Corporation’s 3200 series architectures. In 1992, it was used to
build an optimizing C compiler for MicroUnity’s
MediaProcessor [Hansen]. VPO was selected as one of the
competing technologies for the Open Software Foundation’s
ANDEF project [Johnson et al]. For the ANDF project, VPO
targeted Hewlett-Packard’s PA-RISC and Motorola’s 68000
architectures. Most recently, VPO has been used to build a
commercial C compiler for ARM Ltd.’s ARM/Thumb family of
embedded processors.

Both GCC and VPO are (by software standards) ancient
technologies—development of each was begun almost 20 years
ago. Their longevity is particularly remarkable given the rapid
pace of change in computer architecture and ongoing compiler
research. We believe that GCC’s and VPQO’s durability is due, in
large part, to their use of register transfers as a low-level
intermediate language and their tight integration of a PO-style
peephole optimizer within their global optimizers. These design
decisions have given GCC and VPO the flexibility to handle
new architectures and to be extended with new optimizations,
yet still be quickly retargeted. People routinely report retargeting
times as short as a month. As we move forward into the next
decade, it will be interesting to see whether GCC’s and VPO’s
style of compilation can continue to cope with the rapid pace of
innovation and change.

References

Manuel E. Benitez and Jack W. Davidson. Code generation for
streaming: an access/execute mechanism. ASPLOS’91:132-141, 4/91.

Manuel E. Benitez. Register Allocation and Phase Interactions in a
Retargetable Optimizing Compiler. Ph.D. dissertation, Univ. of Virginia,
Charlottesville, VA, 1994.

Manuel E. Benitez and Jack W. Davidson. The advantages of machine-
dependent global optimization. PLSA’94:105-124, 3/94.

Christina Cifuentes and Mike Van Emmerik. UQBT: Adaptable binary
translation at low cost. JEEE Computer 33(3):60-66, 3/2000.

Jack W. Davidson and Christopher W. Fraser. The design and
application of a retargetable peephole optimizer. ACM TOPLAS
2(2):191-202, 4/80.

Jack W. Davidson. Simplifying Code Generation Through Peephole
Optimization. Ph.D. dissertation, Univ. of Arizona, Tucson, AZ, 1981.

Jack W. Davidson and Christopher W. Fraser. Eliminating redundant
object code. POPL’82:128-132, 1/82.

ACM SIGPLAN 105

Jack W. Davidson and Christopher W. Fraser. Automatic generation of
peephole optimizations. CC’84:111-116, 6/84.

Jack W. Davidson and Christopher W. Fraser. Register allocation and
exhaustive peephole optimization. Software—Practice&Experience
14(9):857-865, 9/84.

Jack W. Davidson and Christopher W. Fraser. Code selection through
object code optimization. ACM TOPLAS 6(4):505-526, 10/84.

Jack W. Davidson and Christopher W. Fraser. Automatic inference and
fast interpretation of peephole optimization rules. Software—
Practice&Experience 17(11):801-812, 11/87.

Jack W. Davidson and Sanjay Jinturkar. Memory access coalescing: a
technique for eliminating redundant memory accesses. PLDI’94:186—
195, 6/94.

Jack W. Davidson and David B. Whalley. Quick compilers using
peephole optimizations. Sofiware—Practice&Experience 19(1):195—
203, 1/89.

Christopher W. Fraser. A compact, machine-independent peephole
optimizer. POPL'79:1-6, 1/79.

Christopher W. Fraser and Alan L. Wendt. Automatic generation of fast
optimizing code generators. PLDI’'88:79-84, 6/88.

Robert Giegerich. A formal framework for the derivation of machine-
specific optimizers. ACM TOPLAS 5(3):478-498, 7/83.

Craig Hansen. MicroUnity’s MediaProcessor architecture. JEEE Micro
16(4):34-41, 8/96.

David R. Hanson. The Y programming language. SIGPLAN Notices
16(2):59-68, 2/81.

Christopher Healy, Mikael Sjodin, Viresh Rustagi, and David Whalley.
Bounding loop iterations for timing analysis. RTAS 98:12-21, 6/98.

Andy Johnson, James Loveluck, and Ira Goldstein. The ANDF
technology program at the OSF RI. OSF/RI Technical Report,
Cambridge, MA and Grenoble, France, 1992.

Sungjoon Jung and Yunheung Paek. The very portable optimizer for
digital signal processors. Proc. of the 2001 Intl. Conf. on Compilers,
Architecture, and Synthesis for Embedded Systems:84-92, 11/01.

Peter B. Kessler. Discovering machine-specific code improvements.
CC’86:249-254, 6/86.

Robert R. Kessler. Peep—An architectural description driven peephole
optimizer. CC’84:106-110, 6/84.

Jinhwan Kim, Sungjoon Jung, Yunheung Paek and Gang-Ryung Uh.
Experience with a retargetable compiler for a commercial network
processor. Proc. of the 2002 Intl. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems:178—187, 10/02.

W. M. McKeeman. Peephole optimization. CACM 8(7):443-444, 7/65.

B. J. McKenzie. Fast peephole optimization techniques. Sofiware—
Practice&Experience 19(12):1151-1162, 12/89.

Frank Mueller and David Whalley. Avoiding unconditional branches by
code replication. PLDI°92:322-330, 6/92.

Frank Mueller and David Whalley. Fast instruction cache analysis via
static cache simulation. Proc. of the 28th Annual Simulation
Symposium:105—-114, 4/95.

Richard M. Stallman. Using the GNU Compiler Collection. Free
Software Foundation, 4/02.

Gang-Ryung Uh and David Whalley. Coalescing conditional branches
into efficient indirect jumps. Proc. of the Static Analysis
Symposium:315-329, 9/97.

Randall T. White, Frank Mueller, Christopher A. Healy, David B.
Whalley, and Marion G. Harmon. Timing analysis for data caches and
set-associative caches. RTAS'97:192-202, 6/97.

William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven O.
Hobbs, and Charles M. Geschke. The Design of an Optimizing
Compiler. Elsevier, New York, 1975.

Minghuo Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and
effective branch reordering using profile data. ACM TOPLAS, to appear.

Best of PLDI 1979-1999

Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction
SIGPLAN Natices Vol. 19, No. 6, June 198§

Automatic Generation of Peephole Optimizationst

Jack W. Davidson
Dept. of Applied Mathematics and Computer Science
University of Virginia
Charlottesville, VA 2290!

Christopher W. Fraser
Dept. of Computer Science
University of Arizona
Tucson, AZ 85721

Abstract

This paper describes a system that automatically
generates peephole optimizations. A general
peephole optimizer driven by a machine description
produces optimizations at compile-compile time for
a fast, pattern-directed, compile-time optimizer.
They form part of a compiler that simplifies retarget-
ing by substituting peephole optimization for case
analysis,

1. Introduction

Code generators often create inefficient juxtapo-
sitions. For example, incrementing and testing a
variable can create a redundant comparison if the
code for the increment automatically sets a condition
code register. Correcting this in the code generator
complicates case analysis combinatorially, since each
combination of language features may generate a
unique juxtaposition [9]). It is often cheaper to gen-
crate code locally and then use a peephole optimizer
to improve inefficient juxtapositions, Peephole
optimization typically reduces code size by 10-50%
{14, 17). Even the new code génerators driven by
‘machine descriptions [6] bencfit from peéephole
optimization [23. _

Classical peephole optimizers [I, 14,15, 17]
rapidly correct a few hand-written, machine-specific

tThis work was supported in part by the National Science Founda-
tion under Grant MCS-7802545.

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific per-
mission,

©1984 ACM 0-89791-139-3/84/0600/0111$00.75

ACM SIGPLAN

106

patterns. For example, the. ambitious “FINAL"
optimizer in the BLISS-11 compiler [17] deletes
unnecessary comparisons, exploits special-case
instructions and exotic addressing modes, coalesces
chains of branches, and deletes unreachable code.
Unfortunately, good patterns can be hard to identify
and are language-, compiler-, and machine-specific,

A recent alternative to classical peephole optimiz-
ers (3] uses a machine description to simulate adja-
cent instructions, replacing them, wherever possible,
with an equivalent singleton. Such machine-directed
optimizers use no patterns, so they are more
thorough and portable than their classical counter-
parts, but they are slower. Their thoroughness
allows the use of naive, casily retargeted code gencra-
tors, but verbose code makes optimization speed
even more crucial, -

This paper describes a system that automatically
generates patterns for a fast classical pecphole optim-
izer. A modern machine-directed optimizer is run at
compile-compile time, and patterns for a fast, classi-
cal compile-time peephole optimizer are automati-
cally inferred from its output. ‘This: combines the
thoroughness and retargetability . of -a - machine-
directed peephole optimizer with the speed of a clas-
sical peephole optimizer. This has.sped up. the
peephole optimization phase of a retargetable.com-
piler by a factor of five. i s

2. A Machine-Directed Optimizer .. .

- The system uses a retargetable péephole optim-
izer called PO." Other documents elaborate on PO
itself [3, 4); this paper summarizes it only enough to
introduce a new application: generating patterns for
a fast, classical peephole optimizer,

Best of PLDI 1979-1999

Given an assembly language program and a sym-
bolic machine description, PO simulates adjacent
instructions and, where possible, replaces them with
an equivalent single instruction. Each machine
description is a grammar for syntax-directed transla-
tion between assembly language and register
transfers. For example, the production

movl src,dst = dst = src; NZ = src ? O;

describes the YAX movl instruction, which copies its
first operand onto its second and sets the condition
code to reflect the sign of the result. Similar produc-
tions describe addressing modes.

To improve an instruction, PO must know Its
effect, that is, the register transfers that it performs,
Early versions of PO computed effects by matching
assembler instructions against the assembler syntax
patterns above and instantiating the corresponding
register transfer patterns. The most recent version
skips this with a compiler that emits register transfers
directly, Register transfers are no harder to emit
than assembly code.

Once PO has the effect of each instruction, it sym-
bolically simulates two- and three-instruction
sequences to form their combined effect. PO then
searches the machine description for an instruction
with this combined effect. If it finds one, it replaces
the orginal instructions with the new one, For
example, the effects of the VAX instructions

movt X,ri
subt2 Y,rt

are

M1l =m[X}; NZ=m[X]1? O
r{1] = r{1] - m[Y]; NZ = r[1] - m[Y] ? ©;

Symbotic simulation combines these to yield

r{1] = m{X] - m[Y]; NZ = m[X] - m{Y] ? O
which is realized by the instruction

subl3 Y, X,r1

so this instruction replaces the two above.

Unlike classical peephole optimizers, PO has no
patterns: it combines alf possible pairs and triples.
As a result, its effect can be described formally and
concisely: when it is finished, no one-, two-, or
three-instruction sequence can be replaced with a
cheaper single instruction having the same effect.
This thoroughness allows code generators to forgo
case analysis and emit only a small subset of the
machine’s instructions and addressing modes (e.g.,

- one form of add, one form of subtract). PO replaces
them with better instructions as it combines adjacen-

ACM SIGPLAN 107

cies. A compiler for the programming language v {8]
based on this technique [4, 5] has been retargeted to
seven different architectures, some in as few as three
man-days. It emits code comparable to host-specific
compilers.

This reliance on peephole optimization makes
optimization speed especially crucial, and PO is
slower than classical target-specific peephole optim-
izers. The Y compiler runs at a fourth the speed of
the UNiX portable C compiler [10], and PO uses
almost half of its time. Proposals 1o speed up optim-
izers like PO are already emergingt [7, 11, 12]. They
propose to perform at compile-compile time some of
the symbolic simulation that PO performs at compile
time. This entails considering at compile-compile
time all possible pairs of instructions [12] or all that
use certain rules (like “eliminate redundant instruc-
tions™ [7, 11]}. Naturally, trade-offs appear likely —
the first approach may be costly on some machines,
the second may miss optimizations, and both may
generate unused optimizations — though the propo-
sals certainly merit further investigation. The
software described below complements these
approaches by automatically inferring patterns from
PO’s behavior on sample data.

3, Automati"c Generation of Patterns

To improve speed, PO is now used at compile-
compile time to generate patterns for a fast compile-
time optimizer, called HOP, which may then be used
in PO’s place. HOP patterns are encoded as text with
embedded pattern variables of the form $i to denote
context-sensitive operands, Thus the pattern

r[$1] = m[$2)

r[$1] = r[$1] - m[$3]

r($1} = m($2] - m[$3]
specifies that register transfers like

r21 = m[X]
r[2] = r[2] - m[Y]

should be replaced with
r[2] = m[Xj - m[Y]

Other classical peephole optimizers use similar
encodings [14, 16]. An appendix gives further exam-
pies of such optimizations and their application.

tOnly one of these proposals reports a prototype [12]. It
is more powerful than an early version of ro, though not
the current version. It considers O(N®) pairs to pO’s O(N),
and, though it appears likely that adaptations could run in
linear time, it is too early to compare their speed with po’s.

Best of PLDI 1979-1999

HOP patterns are inferred from pO’s behavioron a
“training” set. As an option, PO can record each
replacement it makes. For example, when PO makes
a replacement like the one above, it writes

r2] = m{x]
rf2] = r[2] - m[Y]

r(2] = m[X] - m[Y]
to a diagnostic file.

This output is automatically reduced to patterns
by replacing each distinct assembly-time constant
with $i/. For example, the diagnostic output above
would become

r[$1]1 = m[$2]
r(§1] = r[$1] - m[$3]

r[$1]1 = m[$2] - m[$3]

which is the pattern at the head of this section. The
syntax of assembly-time constants is potentially
target-specific. HOP is retargeted by specifying this
syntax. :

PO records the last use of each register in each
block, because this allows it to make replacements
that would otherwise change the effect of the pro-
gram. When this information is used, it is also
recorded in the diagnastic cutput:

M2) =i
r[3] = m[r[2]] (r[2] dead)

1131 = m[i}

These “obituaries” are automatically reduced to pat-
terns with the rest of the diagnostic output, Thus the
example above yields the pattern

r[$1] = $2
r[$31 = m[r[$1]] (r[$1] dead)

r[$3] = m[$2]
The appendix displays several such optimizations.

A few proposed patterns are too general. For
example, the DECSystem-10 diagnostic output

r[2] = m[X]
r[2] = r[2] + 1
m{X] = r[2] (r[2] dead)

m{X] = m{X] + 1
should not yield the pattern

ACM SIGPLAN

108

r[$1] = m[$2]
ri$1] = r[$1] + §3
m{$2] = r[$1] (r[$1] dead)

m{$2] = m($2] + $3

because the replacement is only valid if the increment
$3is 1. The validity of proposed patterns like the one
above could be checked with the machine description
much as PO checks proposed combinations of
instructions. When the instruction checker deter-
mined that $3 could only match 1, it could rewrite the
pattern accordingly. At present, a simpler expedient
is used: constants like zero and one that are special
to some instructions (i.e., that appear explicitly in the
machine description) are added to an exception list
and never replaced with $/. This generates a few
extra patterns when these constants appear in con-
texts where they arc not special (e.g., as register
indices), but the number of these is smalli.

Given the established simplicity of typical pro-
grams [13], compiling a large, varied “training”
testbed with PO should yield enough diagnostic out-
put to generate most needed patterns. At present, the
testbed is the Y compiler’s front end, which compiles
Y into a simple abstract machine code, plus a few
extra test cases, which exercise the few operators sel-
dom used in the compiler. Figure | plots for this
testbed the number -of VAX: patterns generated
versus the number of actual replacements from which
the patterns are gencrated. The pattern file grows
rapidly at first and then levels off. The 17,138
replacements generate only 627 distinct patterns.
Using this pattern {ile, HOP yields the same resuli as
PO when compiling routines from the testbed. - When
compiling other typical routines, HOP’s results are
only about 2% larger than po’s, which suggests that
even this small testbed is adequate,

Ultimately, it should be possible to do without a
testbed, by using an incremental training phase. This
could be implemented by the following changes to
PO. After replacing a pair-or triple, PO would inter-
nally record the pattern represented by the replace-
ment; if ‘the pair or triple could not be replated; Po
would note this as well. Also, PO would be changed
to consult this record and use the fast algorithm
described below to replace or reject juxtapositions
that have appeared before; it would fall back on its
original, ‘slower algorithm:-only for juxtapositions
that had never appeared before. Thus Po would
reach HOP’s speed after a few compilations, and it
would never miss an optimization due to insufficient
training. because ‘PO’s general mechanism. would be
available for new juxtapositions.

Best of PLDI 1979-1999

4. A Pattern-Directed Optimizer

HOP matches patterns without actual string mani-
pulation, by separating each instruction’s pattern or
“skeleton™ from its operands as it reads them. This is
accomplished at compile time by the same procedure
used to form patterns at compile-compile time. For
example, the instruction

2] = 121 - miY]
1s reduced to the skeleton
r[$1] = r[$1] - m[$2]

plus the operands 2 and Y, respectively. That is, the
instruction is representcd by the triple

rg$1y = (813 - m{$2], 2, v

This representation is a little like conventional
assembly code. The skeleton in the first field is deter-
mined roughly by the instruction’s opcode and mode
bits. The operands in the remaining fields are deter-
mined roughly by the instruction’s address and regis-
ter fields.

Hashing helps HoOP match patterns and form
replacements fast. HOP stores skeletons and
operands uniquely in a hash table, so an input skele-
ton is compared with a line from a pattern by merely
comparing two addresses. This operation is logically
similar to, and costs about the same as, comparing
two binary opeodes in a classical peephole optimizer.
If a run of input skeletons matches some complete
pattern, then inter-instruction operand consistency is
checked, again by comparing addresses. Finally,
HoP forms replacements without actual string mani-
pulation, The skeleton for the replacement instrue-
tion is the last line of the successful patiern, and the
operands for the replacement instruction are formed
by reordering the input operands. Thus the typical
pattern is matched and, if successful, repiaced, by
comparing and moving about a dozen pointers.

One detail complicates this procedure. The §i in
input skeletons are numbered from one, so pattern-
matching without string operations requires
renumbering the $i from each line of each pattern
when the pattern file is read. For example, the input

r[4] = m[A]
r[4] = r{4] - m[B]

is rranslated into the triples

r[$1]1 = m[$2], 4, A
r[$11 = r[$1] - m[$2], 4, B

as it is read. To compare such triples with the pattern

ACM SIGPLAN 109

r[$1] = m[$2]
(317 = r[$1] - m{$3]

r[$11 = m{$2) - m{83]

without string operations, the $i of the second line of
the pattern are renumbered to yield

r[$171 = r[$11 - m[82]

as the pattern file is read. The two strings are now
identically equal and can be compared by comparing
addresses in the hash table. A record of the
renumbering is retained for checking inter-
instruction operand consistency.

The input triples above are compared with the
pattern above as follows. First, the two input skele-
tons

r[$1] = m[$2]
r[$11 = r[$1] - m[$2]

are compared with the first two (renumbered) lines of
the pattern

r[$1] = m[$2]
r{$1] = r[$1] - m[$2]

by comparing two pairs of pointers. Next, HOP
checks that $i denotes the same operand in both
input instructions. Since $1 is the only $i that
appears more than once in the original (unrenum-
bered) patiernt, this merely compares the first
operand from the first instruction (the first 4) with
the first operand from the second instruction (the
second 4), again by comparing two string table
addresses. Since all comparisons have succeeded, a
replacement instruction is formed. Its skeleton is the
last linc of the pattern

r[$1] = m[$2] - m[§3]

and its three operands are the 4 and A from the first
instruction and the B from the second instruction.
This represents the instruction

r(4} = m[A] - m[B]

which is the desired replacement for the two instruc-
tions above.

Hashing also heips locate applicable patterns
rapidly. HOP stores its patterns in a hash table keyed
by the hashed addresses of the (uniquely stored)
skeletons that each matches. Thus HOP identifies the
patterns that apply to a given input sequencc by
hashing the addresses of the skeletons from the input

t$2 appears more than once in the renwmnbered pattern,
but this is an artifact of renumbering and so dogs not re-
quire consistency checking..

Best of PLDI 1979-1999

sequence. If this hash table is madc large enough to
make collisions rare, HOP identifics any applicable
patterns in nearly constant time,

These measures make HOP fast, about 5 times fas-
ter than PO. In atypical application, it read 269 lines,
performed 136 replacements, and wrote out the
results in 1.3 CPU seconds on a VAX-11/780. It
spends most of its time reading its input and building
the structures above. The actual matching and
replacements take less than 5% of its time. To save
time, the pattern file is incorporated into HOP at
compile-compile time. For the VAX, HOP plus these
incorporated patterns take 150K bytes where PO
takes 120K bytes.

HOP can also be used for cede generation.
Abstract machines are often mapped onto real
machines by macros, and single-input replacement
patterns are essentially macros. A compiler can thus
be retargeted by writing a machine description and
some patterns for naive code generation. These will
be augmented by automatically generated optimiza-
tion patterns. The use of a single program for code
generation and optimization should make compilers
faster, simpler, and easier to retarget.

HOP can also be used on assembly code. The
hand-written patterns for code generation could emit
assembly code, for this can be mapped to and from
register transfers for PO by translators automatically
generated from the machine description [3]
Translating assembly code to register transfers would
slow PO, but this is unimportant now that HOP has
replaced PO at compile time.

Acknowledgments

The authors thank Dave Hanson for his many
helpful comments, and Torben Nielsen for his techni-
cal assistance,

Appendix

This appendix traces the optimization of the
VAX code for

j=i+4

The figure below gives postfix intermediate code and
corresponding naive object code for this statement.

postfix obiect code
1. pushi r[2] = mii]
2. pushc 4 r(31 = 4
3. add r[2] = r[2] + r[3] (r{3] dead)
4. popj m[j] = r[2] ({(r[2] dead)

Initially, the pattern

ACM SIGPLAN

r[$1] = §2
r[$3] = r{$3] + r[$1] (r[$1] dead)

r[$3} = r{$3] + $2

replaces instructions 2 and 3 with
2] =rf2] + 4

Next, the pattern

r($11 = m{$2]
r(§11 = r[§1] + $3

([$1] = m[$2] + $3
combines instruction 1 with this new instruction,
yielding

r[2] = m[i] + 4
Finally, the pattern

r[$1] = m[$2] + $3
m[$4] = r[$1] (r[$1] dead)

m[$4] = m[$2] + $3

replaces this last instruction and instruction 4 with
m[j] = m[i] + 4

which represents the VAX instruction
addi3 $4,i,]

Thus the four original instructions have been
replaced with one.

References

1. J. T. Bagwell,Jr., Local Optimizations,
SIGPLAN Notices 5,7 (July 1970), 52-66.

2, T, Crowley, Combining Table-driven* Effect
Selection and Description-Driven Peephole
Optimization for Automatic Code Generation,
MS thesis, MIT, September 1982,

3. J. W. Davidson and C. W. Fraser, The Design
and Application of a Retargetable Peephole
Optimizer, ACM Trans. Prog. Lang. and
Systems 2, 2 (April 1980), 191-202. ‘

4. 1. W. Davidson, Simplifying Code Generation
Through Peephole Optimization, = PhD
dissertation, University of Arizona, December
1981. .

5. J. W, Davidson and C. W. Fraser, Code.
Selection Through Object Code Optimization,
ACM Trans. Prog. Lang. and Systems, 1o
appear. : -

Best of PLDI 1979-1999

10.

1.

M. Ganapathi, C. N. Fischer and J. L.
Hennessy, Retargetable Compiler Code
Generation, Computing Surveys 14, 4
(December 1982), 573-592.

R. Giegerich, A Formal Framework for the
Derivation of Machine-Specific Optimizers,
ACM Trans. Prog. Lang. and Systems 3, 3
(July 1983), 478-498.

D. R. Hanson, The Y Programming Language,
SIGPLAN Notices 16, 2 {Feb. 1981), 59-68,

W. Harrison, A New Strategy for Code
Generation - The General Purpose Optimizing
Compiler, Conf. Rec. 4th ACM Symp. on
Prin. of Programming Languages, January
1977, 29-37.

S. C. Johnson, A Portable Compiler: Theory
and Practice, Conf. Rec. 5th ACM Symp. on
Prin. of Programming Languages, Jan. 1978,
97-104.

P. B. Kessler, Machine Dependencies in
Retargetable Compiler Construction,
Dissertation proposal, Department of
Electrical Engineering and Computer Science,

University of California, Berkeley, May 1982.

Figure 1z

700

13.

14.

15.

16.

17.

R. R. Kessler, Peephole Optimization in COG,
Operating Note 76, Utah Symbolic
Computation Group, Computer Science
Department, University of Utah, June 1983,

D. E. Knuth, An Empirical Study of Fortran
Programs, Software— Practice & Experience I,
2 (April-June 1971), 105-133.

D. A. Lamb, Construction of a Peephole
Optimizer, Software— Practice & Experience
11{(1981), 638-647.

W. M. McKeeman, Peephole Optimization,
Comm. ACM &, 7 (July 1965), 443-444,

A. S. Tanenbaum, H. van Staveren and J. W,
Stevenson, Using Peephole Optimization on
Intermediate Code, ACM Trans. Prog. Lang.
and Systems 4, 1 (Januvary 1982), 21-36.

W. Wulf, R. K. Johnsson, C. B. Weinstock, S.
O. Hobbs and C. M. Geschke, The Design of
an Optimizing Compiler, North Holland, 1975.

VAX Pattern File Growth

600

0 %000

10000

15000 20000

Replacements

ACM SIGPLAN

111

Best of PLDI 1979-1999

