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This paper was the last in a series about the retargetable 
peephole optimizer PO, and it was the only one to appear in a 
PLDI/CC conference. PO is perhaps best known for its influence 
on GCC [Stallman], a compiler with many targets and wide use. 

Peephole optimizers [McKeeman 1965] scan object code for 
instruction sequences that can be replaced profitably with better 
sequences. For example, the source code 

i = j; if (i > 0) … 
might compile into 

move j,i 
test i 
bne L1 

On machines that set the condition codes or flags as a side effect 
of the move, the test is redundant. Even if the code generated for 
the source statements is flawless in isolation, the optimal 
fragments can be suboptimal when juxtaposed. Despite decades 
of progress of code generation, most compilers still rely on 
peephole optimizers to clean up some patterns. 

Peephole optimizers can be very fast: the Bliss-11 peephole 
optimizer [Wulf] is said to have run in “negative time” because 
it discarded code faster than it could be formatted and emitted. 
Such optimizers required, however, programmers to scan object 
code, identify the inefficient patterns, and write code to locate 
and replace each pattern. 

PO replaced these manual steps by using a formal specification 
of the instructions of the target machine. A bi-directional 
translation grammar converted assembly code into register 
transfers that made the effect of each instruction explicit. For 
example, the translation of the move instruction above might be 

m[i]=m[j]; NE=(m[j]!=0); GT=(m[j]>0); 
PO simulated runs of register transfers symbolically, using a 
process akin to a primitive form of abstract interpretation. It then 
attempted to translate the combined effect back into assembly 
code. If successful, it then replaced the original run with the 
shorter singleton, thus accomplishing the peephole optimization. 

Register transfers represent target-specific instructions in a 
target-independent form and thus allow machine-independent 
optimizers to analyze and manipulate machine-dependent code. 
This feature, combined with PO’s ability to check a modified 
instruction against a machine specification, significantly reduces 
machine-specific code and has proven to be a major benefit to 
retargetable compilers. 

PO’s thoroughness made it practical to use a naïve code 
generator to emit “worst case” code, because PO cleaned up the 
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code as a special case of the peephole optimizations that it was 
doing anyway. In time, a common sub-expression eliminator 
was added to PO, and the peephole-optimization phase was 
labeled “Combiner.” 

PO was, however, not fast, but the PLDI/CC paper in this 
retrospective demonstrated a way to memo-ize the process in 
rewrite rules for a faster peephole optimizer, HOP. For example, 
the replacement above might create the rule 

move %1,%2 
test %2 
= 
move %1,%2 

The percent-digit pairs denote wild-card patterns. 

There were four papers about PO, though three have both 
conference and subsequent journal versions. The first was about 
the grammar-driven peephole optimizer [Fraser 1979; Davidson 
and Fraser 1980]. The second added common sub-expression 
elimination [D&F 1982; D&F 9/84]. The third demonstrated 
how PO allowed the use of naïve code generators [D&F 10/84]. 
The last added HOP [D&F 6/84; D&F 1987]. Other approaches 
to specification-driven peephole optimizers have also been 
devised and published [Giegerich; Kessler 1984; Kessler 1986]. 

In 1985, Richard Stallman and Len Tower requested information 
about PO, and Fraser sent them a (9-track!) tape containing the 
University of Arizona’s source distribution of the Y compiler 
[Hanson 1981; Davidson 1981], which included PO. Our 
implementation of PO was a research prototype, not a 
production tool, so we understood that it was useful mainly as a 
guide and that the code itself did not become part of the GNU C 
compiler. GCC ultimately encompassed many more 
optimizations, but PO’s machine descriptions, register transfers, 
simulation-driven peephole optimizer, and even the name 
“Combiner” survive in GCC today. 

Research on compilers that use register transfers and peephole 
optimization as a code generation methodology continues to this 
day. In the late 1980’s, there were research efforts that addressed 
one of the deficiencies of the original PO and HOP—slow 
compilation speed. In PLDI’88, Fraser and Wendt described a 
system that uses a peephole optimizer to produce code 
generation patterns that are compiled into a fast, integrated code 
generator [Fraser and Wendt]. Davidson and Whalley described 
an approach for quickly building compilers where classical 
peephole optimizer rules are compiled into directly executed 
code resulting in a very fast compiler [Davidson and Whalley]. 
McKenzie discussed several techniques used to speed up the 
peephole optimizer in the Amsterdam compiler kit [McKenzie]. 

At about the same time as the start of the development of GCC, 
the development of another widely used retargetable optimizing 
compiler infrastructure began. The Very Portable Optimizer 
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(VPO) developed at the University of Virginia uses register 
transfers as its sole intermediate representation, and it makes 
substantial use of a PO-style peephole optimizer throughout the 
optimization process [Benitez 1994; Benitez and Davidson 
1994]. VPO has been used as a research infrastructure for a wide 
variety of systems research, and it has been used to build several 
successful commercial compilers. 

Researchers have used VPO as a vehicle for code generation and 
optimization research in a variety of contexts and for a variety of 
different machine architectures. VPO has been used within the 
real-time community for timing analysis and cache performance 
[Healy et al; White et al; Mueller and Whalley 1995]. 
Researchers have used VPO to develop optimization algorithms 
for reducing the impact of branches in code [Yang et al; Mueller 
and Whalley 1992; Uh and Whalley], to develop and evaluate 
optimizations to exploit emerging microarchitecture features 
designed for high-performance [Benitez and Davidson 1991; 
Davidson and Jinturkar], and as a infrastructure for binary 
translation [Cifuentes and Van Emmerik]. Recently VPO has 
been used to develop optimizing compilers for DSP and network 
processors [Jung and Paek; Kim et al]. 

VPO has been used to build several commercial compilers. In 
1985, it was used to build one of the first validated Ada 
compilers. This compiler targeted Concurrent Computer 
Corporation’s 3200 series architectures. In 1992, it was used to 
build an optimizing C compiler for MicroUnity’s 
MediaProcessor [Hansen]. VPO was selected as one of the 
competing technologies for the Open Software Foundation’s 
ANDF project [Johnson et al]. For the ANDF project, VPO 
targeted Hewlett-Packard’s PA-RISC and Motorola’s 68000 
architectures. Most recently, VPO has been used to build a 
commercial C compiler for ARM Ltd.’s ARM/Thumb family of 
embedded processors. 

Both GCC and VPO are (by software standards) ancient 
technologies—development of each was begun almost 20 years 
ago. Their longevity is particularly remarkable given the rapid 
pace of change in computer architecture and ongoing compiler 
research. We believe that GCC’s and VPO’s durability is due, in 
large part, to their use of register transfers as a low-level 
intermediate language and their tight integration of a PO-style 
peephole optimizer within their global optimizers. These design 
decisions have given GCC and VPO the flexibility to handle 
new architectures and to be extended with new optimizations, 
yet still be quickly retargeted. People routinely report retargeting 
times as short as a month. As we move forward into the next 
decade, it will be interesting to see whether GCC’s and VPO’s 
style of compilation can continue to cope with the rapid pace of 
innovation and change. 
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