
RETROSPECTIVE:

Automatic Generation of Peephole Optimizations

Jack W. Davidson

Department of Computer Science
University of Virginia

Charlottesville, VA 22904
jwd@virginia.edu

Christopher W. Fraser

Microsoft Research
One Microsoft Way

Redmond, WA 98052
cwfraser@microsoft.com

This paper was the last in a series about the retargetable
peephole optimizer PO, and it was the only one to appear in a
PLDI/CC conference. PO is perhaps best known for its influence
on GCC [Stallman], a compiler with many targets and wide use.

Peephole optimizers [McKeeman 1965] scan object code for
instruction sequences that can be replaced profitably with better
sequences. For example, the source code

i = j; if (i > 0) …
might compile into

move j,i
test i
bne L1

On machines that set the condition codes or flags as a side effect
of the move, the test is redundant. Even if the code generated for
the source statements is flawless in isolation, the optimal
fragments can be suboptimal when juxtaposed. Despite decades
of progress of code generation, most compilers still rely on
peephole optimizers to clean up some patterns.

Peephole optimizers can be very fast: the Bliss-11 peephole
optimizer [Wulf] is said to have run in “negative time” because
it discarded code faster than it could be formatted and emitted.
Such optimizers required, however, programmers to scan object
code, identify the inefficient patterns, and write code to locate
and replace each pattern.

PO replaced these manual steps by using a formal specification
of the instructions of the target machine. A bi-directional
translation grammar converted assembly code into register
transfers that made the effect of each instruction explicit. For
example, the translation of the move instruction above might be

m[i]=m[j]; NE=(m[j]!=0); GT=(m[j]>0);
PO simulated runs of register transfers symbolically, using a
process akin to a primitive form of abstract interpretation. It then
attempted to translate the combined effect back into assembly
code. If successful, it then replaced the original run with the
shorter singleton, thus accomplishing the peephole optimization.

Register transfers represent target-specific instructions in a
target-independent form and thus allow machine-independent
optimizers to analyze and manipulate machine-dependent code.
This feature, combined with PO’s ability to check a modified
instruction against a machine specification, significantly reduces
machine-specific code and has proven to be a major benefit to
retargetable compilers.

PO’s thoroughness made it practical to use a naïve code
generator to emit “worst case” code, because PO cleaned up the

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 $5.00

code as a special case of the peephole optimizations that it was
doing anyway. In time, a common sub-expression eliminator
was added to PO, and the peephole-optimization phase was
labeled “Combiner.”

PO was, however, not fast, but the PLDI/CC paper in this
retrospective demonstrated a way to memo-ize the process in
rewrite rules for a faster peephole optimizer, HOP. For example,
the replacement above might create the rule

move %1,%2
test %2
=
move %1,%2

The percent-digit pairs denote wild-card patterns.

There were four papers about PO, though three have both
conference and subsequent journal versions. The first was about
the grammar-driven peephole optimizer [Fraser 1979; Davidson
and Fraser 1980]. The second added common sub-expression
elimination [D&F 1982; D&F 9/84]. The third demonstrated
how PO allowed the use of naïve code generators [D&F 10/84].
The last added HOP [D&F 6/84; D&F 1987]. Other approaches
to specification-driven peephole optimizers have also been
devised and published [Giegerich; Kessler 1984; Kessler 1986].

In 1985, Richard Stallman and Len Tower requested information
about PO, and Fraser sent them a (9-track!) tape containing the
University of Arizona’s source distribution of the Y compiler
[Hanson 1981; Davidson 1981], which included PO. Our
implementation of PO was a research prototype, not a
production tool, so we understood that it was useful mainly as a
guide and that the code itself did not become part of the GNU C
compiler. GCC ultimately encompassed many more
optimizations, but PO’s machine descriptions, register transfers,
simulation-driven peephole optimizer, and even the name
“Combiner” survive in GCC today.

Research on compilers that use register transfers and peephole
optimization as a code generation methodology continues to this
day. In the late 1980’s, there were research efforts that addressed
one of the deficiencies of the original PO and HOP—slow
compilation speed. In PLDI’88, Fraser and Wendt described a
system that uses a peephole optimizer to produce code
generation patterns that are compiled into a fast, integrated code
generator [Fraser and Wendt]. Davidson and Whalley described
an approach for quickly building compilers where classical
peephole optimizer rules are compiled into directly executed
code resulting in a very fast compiler [Davidson and Whalley].
McKenzie discussed several techniques used to speed up the
peephole optimizer in the Amsterdam compiler kit [McKenzie].

At about the same time as the start of the development of GCC,
the development of another widely used retargetable optimizing
compiler infrastructure began. The Very Portable Optimizer

ACM SIGPLAN 104 Best of PLDI 1979-1999

cwfraser
Note
© ACM, 2004. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM SIGPLAN Notices Special Issue, Twenty Years of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 1979-1999, A Selection, {34, 0362-1340, (April 2004)} http://doi.acm.org/10.1145/989393.989407

(VPO) developed at the University of Virginia uses register
transfers as its sole intermediate representation, and it makes
substantial use of a PO-style peephole optimizer throughout the
optimization process [Benitez 1994; Benitez and Davidson
1994]. VPO has been used as a research infrastructure for a wide
variety of systems research, and it has been used to build several
successful commercial compilers.

Researchers have used VPO as a vehicle for code generation and
optimization research in a variety of contexts and for a variety of
different machine architectures. VPO has been used within the
real-time community for timing analysis and cache performance
[Healy et al; White et al; Mueller and Whalley 1995].
Researchers have used VPO to develop optimization algorithms
for reducing the impact of branches in code [Yang et al; Mueller
and Whalley 1992; Uh and Whalley], to develop and evaluate
optimizations to exploit emerging microarchitecture features
designed for high-performance [Benitez and Davidson 1991;
Davidson and Jinturkar], and as a infrastructure for binary
translation [Cifuentes and Van Emmerik]. Recently VPO has
been used to develop optimizing compilers for DSP and network
processors [Jung and Paek; Kim et al].

VPO has been used to build several commercial compilers. In
1985, it was used to build one of the first validated Ada
compilers. This compiler targeted Concurrent Computer
Corporation’s 3200 series architectures. In 1992, it was used to
build an optimizing C compiler for MicroUnity’s
MediaProcessor [Hansen]. VPO was selected as one of the
competing technologies for the Open Software Foundation’s
ANDF project [Johnson et al]. For the ANDF project, VPO
targeted Hewlett-Packard’s PA-RISC and Motorola’s 68000
architectures. Most recently, VPO has been used to build a
commercial C compiler for ARM Ltd.’s ARM/Thumb family of
embedded processors.

Both GCC and VPO are (by software standards) ancient
technologies—development of each was begun almost 20 years
ago. Their longevity is particularly remarkable given the rapid
pace of change in computer architecture and ongoing compiler
research. We believe that GCC’s and VPO’s durability is due, in
large part, to their use of register transfers as a low-level
intermediate language and their tight integration of a PO-style
peephole optimizer within their global optimizers. These design
decisions have given GCC and VPO the flexibility to handle
new architectures and to be extended with new optimizations,
yet still be quickly retargeted. People routinely report retargeting
times as short as a month. As we move forward into the next
decade, it will be interesting to see whether GCC’s and VPO’s
style of compilation can continue to cope with the rapid pace of
innovation and change.

References

Manuel E. Benitez and Jack W. Davidson. Code generation for
streaming: an access/execute mechanism. ASPLOS’91:132–141, 4/91.

Manuel E. Benitez. Register Allocation and Phase Interactions in a
Retargetable Optimizing Compiler. Ph.D. dissertation, Univ. of Virginia,
Charlottesville, VA, 1994.

Manuel E. Benitez and Jack W. Davidson. The advantages of machine-
dependent global optimization. PLSA’94:105–124, 3/94.

Christina Cifuentes and Mike Van Emmerik. UQBT: Adaptable binary
translation at low cost. IEEE Computer 33(3):60–66, 3/2000.

Jack W. Davidson and Christopher W. Fraser. The design and
application of a retargetable peephole optimizer. ACM TOPLAS
2(2):191–202, 4/80.

Jack W. Davidson. Simplifying Code Generation Through Peephole
Optimization. Ph.D. dissertation, Univ. of Arizona, Tucson, AZ, 1981.

Jack W. Davidson and Christopher W. Fraser. Eliminating redundant
object code. POPL’82:128–132, 1/82.

Jack W. Davidson and Christopher W. Fraser. Automatic generation of
peephole optimizations. CC’84:111–116, 6/84.

Jack W. Davidson and Christopher W. Fraser. Register allocation and
exhaustive peephole optimization. Software—Practice&Experience
14(9):857–865, 9/84.

Jack W. Davidson and Christopher W. Fraser. Code selection through
object code optimization. ACM TOPLAS 6(4):505–526, 10/84.

Jack W. Davidson and Christopher W. Fraser. Automatic inference and
fast interpretation of peephole optimization rules. Software—
Practice&Experience 17(11):801–812, 11/87.

Jack W. Davidson and Sanjay Jinturkar. Memory access coalescing: a
technique for eliminating redundant memory accesses. PLDI’94:186–
195, 6/94.

Jack W. Davidson and David B. Whalley. Quick compilers using
peephole optimizations. Software—Practice&Experience 19(1):195–
203, 1/89.

Christopher W. Fraser. A compact, machine-independent peephole
optimizer. POPL'79:1–6, 1/79.

Christopher W. Fraser and Alan L. Wendt. Automatic generation of fast
optimizing code generators. PLDI’88:79–84, 6/88.

Robert Giegerich. A formal framework for the derivation of machine-
specific optimizers. ACM TOPLAS 5(3):478–498, 7/83.

Craig Hansen. MicroUnity’s MediaProcessor architecture. IEEE Micro
16(4):34–41, 8/96.

David R. Hanson. The Y programming language. SIGPLAN Notices
16(2):59–68, 2/81.

Christopher Healy, Mikael Sjödin, Viresh Rustagi, and David Whalley.
Bounding loop iterations for timing analysis. RTAS’98:12–21, 6/98.

Andy Johnson, James Loveluck, and Ira Goldstein. The ANDF
technology program at the OSF RI. OSF/RI Technical Report,
Cambridge, MA and Grenoble, France, 1992.

Sungjoon Jung and Yunheung Paek. The very portable optimizer for
digital signal processors. Proc. of the 2001 Intl. Conf. on Compilers,
Architecture, and Synthesis for Embedded Systems:84–92, 11/01.

Peter B. Kessler. Discovering machine-specific code improvements.
CC’86:249–254, 6/86.

Robert R. Kessler. Peep—An architectural description driven peephole
optimizer. CC’84:106–110, 6/84.

Jinhwan Kim, Sungjoon Jung, Yunheung Paek and Gang-Ryung Uh.
Experience with a retargetable compiler for a commercial network
processor. Proc. of the 2002 Intl. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems:178–187, 10/02.

W. M. McKeeman. Peephole optimization. CACM 8(7):443–444, 7/65.

B. J. McKenzie. Fast peephole optimization techniques. Software—
Practice&Experience 19(12):1151–1162, 12/89.

Frank Mueller and David Whalley. Avoiding unconditional branches by
code replication. PLDI’92:322–330, 6/92.

Frank Mueller and David Whalley. Fast instruction cache analysis via
static cache simulation. Proc. of the 28th Annual Simulation
Symposium:105–114, 4/95.

Richard M. Stallman. Using the GNU Compiler Collection. Free
Software Foundation, 4/02.

Gang-Ryung Uh and David Whalley. Coalescing conditional branches
into efficient indirect jumps. Proc. of the Static Analysis
Symposium:315–329, 9/97.

Randall T. White, Frank Mueller, Christopher A. Healy, David B.
Whalley, and Marion G. Harmon. Timing analysis for data caches and
set-associative caches. RTAS’97:192–202, 6/97.

William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven O.
Hobbs, and Charles M. Geschke. The Design of an Optimizing
Compiler. Elsevier, New York, 1975.

Minghuo Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and
effective branch reordering using profile data. ACM TOPLAS, to appear.

ACM SIGPLAN 105 Best of PLDI 1979-1999

ACM SIGPLAN 106 Best of PLDI 1979-1999

ACM SIGPLAN 107 Best of PLDI 1979-1999

ACM SIGPLAN 108 Best of PLDI 1979-1999

ACM SIGPLAN 109 Best of PLDI 1979-1999

ACM SIGPLAN 110 Best of PLDI 1979-1999

ACM SIGPLAN 111 Best of PLDI 1979-1999

