Eliminating Redundant Object Codef

Jack W. Davidson}
Christopher W. Fraser

Department of Computer Science
University of Arizona
Tucson, AZ 85721

Abstract

Compilers usually eliminate common subexpres-
sions in intermediate code, not object code. This
reduces machine-dependence but misses the machine-
‘dependent common subexpressions introduced by the
last phases of code expansion. This paper describes a
machine-independent procedure for eliminating
machine-specific common subexpressions. It also
identifies dead variables, defines windows for a com-
panion peephole optimizer, and forms the basis of a
retargetable register allocator. Its techniques for han-
dling machine-specific data should generalize to other
optimizations as well.

1. Introduction

Most implementations of common subexpression
elimination (‘CSE’) accept intermediate code such as
triples or quadruples, not object code. This simplifies
implementation but may sacrifice code quality because
the eventual expansion of the intermediate code may
introduce new common subexpressions. For example,
expanding address calculations often creates redun-
dant machine-dependent subexpressions that cannot
be eliminated in the intermediate code because they do
not appear until after the final stages of code genera-
tion. This problem may be attacked by carefully tailor-
ing the intermediate code to the machines at hand, but
this complicates the design of the intermediate code
and jeopardizes its machine-independence.
1This work was supported in part by the National Science Foundation
under Grant MCS-7802545.

}Present address: Jack W. Davidson, Dept. of Applied Mathematics
and Computer Science, University of Virginia, Charlottesville, VA 22901

Permission to copy without fec all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-065-6/82/001/0128 $00.75

128

This paper describes two programs — called cacher
and assigner — that implement CSE and register allo-
cation on object code for an optimizing Y compiler
[Hanson]. They treat machine-specific instructions,
but they do so in a machine-independent fashion. By
generalizing an existing CSE algorithm [Freiburg-
house, Sites], cacher attacks the problems described
above, identifies dead variables, and defines windows
for a companion peephole optimizer {Davidson]. With
assigner, it implements register allocation. The
current implementation operates locally, but its tech-
niques for handling machine-specific data should gen-
eralize to global optimizations as well.

2. Register Transfers

Like many recent retargetable code generators and
optimizers [Cattell, Davidson, Glanville], cacher
represents instructions using ISP-like register transfers
[Bell]l. For example, the instruction sequence

r[1] = r[1] + mla]
m(b] = r[1]
pc = if cc > 0 then loop else pc

adds memory location a to register 1, stores the result
in memory location b, and jumps to loop if register cc
exceeds zero. The code generator emits these instead
of equivalent assembly or machine code. Because
cacher and assigner assume responsibility for register
allocation, the code generator may assume an infinite
supply of registers. assigner maps references to non-
existent pseudo-registers (like r[1000]) onto real regis-
ters. This is a common technique for simplifying code
generation [Chaitin, Gries].

3. cacher

cacher symbolically simulates register transfers and
records the values that they store. When it encounters
one that recomputes an existing value, it edits the
instruction stream to reuse the value stored earlier.

To cacher, a block is a section of code with exactly
one entry. Two symbolic expressions (or ‘s-exprs’) a

cwfraser
Note
© ACM, 1982. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 9th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, {0-89791-065-6, (1982)}. http://doi.acm.org/10.1145/582153.582167

and b are said to march at a given point in a block if
and only if the block has set variables so that ¢ and b
have the same value at that point. For example, after
the sequence

r{1] = m[a]
r(1] = r{1]1 + m[b]

r[1] matches m[al+m[b]. One s-expr is said to be older
than another at a given point in a block if and only if it
was computed earlier in the block. For example, after
the instructions above, m[al is older than m[a]+m[b],
which is older than r[1].

cacher reads a block at a time, processes it, and
emits the simplified code. As it advances through the
block, it maintains a cache of the s-exprs that are com-
puted. It partitions this cache into equivalence classes
induced by the equivalence relation match, and it sorts
the s-exprs in each equivalence class by age, oldest first.
The cache associates each active s-expr with the list of
s-exprs it now matches, making it easy to identify
incoming s-exprs that have been computed already.
The procedure follows:

1. Split each register transfer into two parts. Call its
left-hand side dsr and its right-hand side src.

2. Find the oldest expression that matches src¢. That is,
for each register that appears in src, replace the
register in sr¢ with the oldest value in the register’s
equivalence class. Call the resulting string csre.

3. Find the oldest expression that matches dst’s
address. First, strip off the leading name and outer-
most brackets, if any, exposing the address calcula-
tion. Call this string addr. Replace each register in
addr with the oldest value in the register’s
equivalence class. Call the result caddr. Restore the
original name and outermost brackets to caddr, and
call the result cdst.

. Find the cheapest replacement for src¢ and addr. If
src¢ has been computed before then some previous
instruction has had the same ¢sr¢ and has entered it
in the cache (see Step 5). Thus the cheapest expres-
sion for this src is the cheapest s-expr in c¢src’s
equivalence class. If a cheaper expression for src is
found, it replaces src in the original register transfer.
Otherwise, src is not disturbed. A similar procedure
replaces addr with its cheapest equivalent. Cheap-
ness is determined by a machine-dependent function
described below.

5. Update the cache to reflect the current instruction’s
change to dst. Deletions are needed because this
instruction changes cdst and thus invalidates s-exprs
that use it. Insertions are needed because this
instruction forms a new equivalence, between csre
and cdst. First, find csrc’s equivalence class. If no
equivalence class contains csre¢, create one. Next,
delete from the cache every s-expr with which cdst
interferes. Finally, add cdst to the equivalence class

129

found for csrc above. cdst’s new home is identified
before the deletions because it cannot be found later
if ¢csre is among the deletions. Interference is deter-
mined by a machine-dependent function described
below.

cacher also creates and maintains wuse lists, which
link the instructions that use each particular s-expr.
When an instruction is first encountered, it is added to
the use lists of each s-expr it uses. When an instruction
is changed to use a cheaper reference, it is removed
from the use lists of the s-exprs it had used, and it is
added to the use lists of the new s-exprs that it now
uses. When a register’s use list becomes empty, the
instruction that loaded that register is deleted and
removed from the use lists of the s-exprs it had used.
This may trigger further deletions and removals, recur-
sively. This prompt removal from use lists assumes
that the code generator uses each temporary just once.
This simplifies management of temporaries for all par-
ties yet sacrifices nothing because the code generator
may use as many registers as it needs.

Finally, cacher may be asked to keep some values
out of registers. For example, the PDP-11 has so few
allocatable registers that it may be better to save them
for values harder to access than, say, constants. Code
generators implement this by marking instructions that
load such values. cacher treats marked instructions
like all others, except that it will not reuse their cdsts in
step 4 above. A marked instruction may, however, be
deleted if it provides input to a larger redundant com-
putation.

Though simple, cacher does several optimizations at
once. Among these are redundant load elimination,
common subexpression elimination, dead-variable
identification, and peephole definition.

3.1 Redundant Load Elimination

Since register references are cheaper than memory
references, the algorithm above will remove loads. For
example,

a=c¢c
b=c+1

might compile into code that begins

ri1] = mlcl
mla] = r[1]
r[2] = mic]

The first two instructions cache three s-exprs — r[1],
m[a)], and m[c] — which form one equivalence class.
As the third instruction is processed, dst and cdst
become r[2], and src and csrc become m[c]. There is an
equivalence class that contains m[c], and the cheapest
member of this set is r[1], so the third instruction is
changed to

rl2] = r[1]

eliminating a redundant load of memory location c.

This example exposes one of cacher’s assumptions.
In theory, a machine might have instructions for load-
ing from memory but not for inter-register transfers
like the one above. Thus, in theory, cacher should use
the peephole optimizer’s instruction checker [David-
son] to verify the legality of its changes. In practice,
most machines allow register references to replace
memory references, so instruction checking has not yet
proven necessary.

3.2 Common Subexpression Elimination

Deleting unused instructions eliminates common
subexpressions. For example, the code

a=c+3
b=c+3
might compile into
1. r[11 = mlc]
2. r[2]1 =3
3. r[1]1=r[1] + r[2]
4. mla] = r[1]
5. r[3] = mlc]
6. r[4] =3
7. r[3) =r[3] + r[4]
8. m[b] = r[3]

When cacher processes instruction 6, it recognizes that
r[2] already holds 3, so it changes the instruction to use
the cheaper r[2] and adds it to r[2]’s use list. It then
processes instruction 7 and discovers that the sum
m[c]+3 is already available in r[1]. It changes the
instruction to use the cheaper reference, adds the
instruction to r{1]’s use list, and removes it from the use
lists of r[3] and r[4]. This empties these lists, so instruc-
tions 5 and 6 are deleted. It then turns to instruction 8,
replaces r[3] with the cheaper r[1] (older s-exprs are the
cheaper of equals), deletes the now-unused instruction
7, and yields the program:

r[1] = mlc]

r[21 =3

r(1]1 = r{11 + r[2]
mlal = r[1]
mle] = r[1]

@ LN

Common subexpressions are usually eliminated at a
higher level, but machine-level CSE can do more
because «ll values are exposed at this level. For exam-
ple, address calculations often require code to multiply
indices, shift offsets, or add frame pointers. Expanding
similar address calculations may create redundant mul-
tiplications, shifts, or additions that cannot be elim-
inated earlier because they do not appear carlier. For
example, the source program

130

f(alil)
i = %2
might generate the machine-independent postfix code

push i
push a
index

call f

push i
push 2
mul

pop i

There are no obvious common subexpressions in this
code, but expanding the index for byte-addressed
machines may form the same product (or shift result)
computed by the mul. It is hard for conventional code
generators to catch such common subexpressions
without introducing machine-dependencies into their
CSE code.

Also, some instructions have side effects (e.g., divi-
sions often yield a remainder as well as a quotient) that
cannot be used in higher-level CSE because they do not
appear at a higher level. Similarly, expanding com-
parisons requires, on some machines, a subtraction fol-
lowed by a comparison with zero. The difference may
be redundant, but it cannot be recognized as such at a
higher level because it does not appear until after the
machine-dependent stages of code expansion. The
situations that create machine-specific common subex-
pressions are ad hoc and hard to enumerate, but they
occur nonetheless.

3.3 Window Definition

cacher also defines windows for a peephole optim-
izer. Most peephole optimizers use a fixed window and
thus consider many pairs that cannot combine and
miss many valid combinations merely because the
instructions are not adjacent. Scanning for more dis-
tant candidates [Wulf] may consider many instructions
that are unlikely to combine.

cacher exploits the observation that many peephole
optimizations combine an instruction that sets some
cell with the next instruction that uses itf. cacher
employs its use lists to link such instructions for its
companion peephole optimizer, which tries combining
only linked instructions. This improvement on the
fixed window typically makes the peephole optimizer
run 30% faster and yield code that is 209% shorter.
Code inspection uncovers few missed peephole optimi-
zations.
fWhen the cell is the program counter, it 1s next ‘used’ by the instruc-
tion after the branch and by the instruction targeted by the branch.

This definition of program counter ‘use’ allows peephole optimizers to
collapse branch chains and eliminate unreachable code [Davidson].

3.4 Dead-variable Identification

cacher records where cells are last used, so it passes
this information to the peephole optimizer and the
register assigner, which can better combine instructions
and assign registers if they know where cells die. Com-
pilers usually identify dead variables earlier, but just as
machine-level CSE permits a few new optimizations, so
does machine-level dead-variable analysis. For exam-
ple. many calling sequences return function values in a
fixed register. After the function return, the calling
sequence often moves the value to another register, in
case the special register is needed again. If it is not
needed again, this move will prove unnecessary. Con-
ventional compilers identify such avoidable moves
deep in a machine-dependent code generator. cacher
identifies such moves with a far more general opera-
tion.

4. Register Assignment

assigner maps the pseudo-registers onto the real
registers. It assigns a real register to each pseudo-
register, and it replaces each use of the pseudo-register
with the associated real one. It frees the real register
when the pseudo-register dies.

When the demand for hardware registers exceeds
the supply, assigner allocates a temporary, saves the
contents of the least-recently-used hardware register,
and frees it for use. The LRU replacement policy is
sub-optimal [Freiburghouse], and the new loads and
stores could introduce inefficiencies, but these
shortcomings have not yet earned attention: the 3500-
line Y compiler is compiled using only 42 register spills
for the PDP-11 (with three allocated registers) and
none for the DECsystem-10 (with twelve).

The register assigner also translates the register
transfers to assembly code. It uses a machine-
independent algorithm that is driven by a machine
description [Davidson].

5. Implementation

cacher and assigner are written in C [Kernighan]
and run on a PDP-11/70 under UNIX. cacheris 1100
lines of code and processes about 100 instructions per
second. assigner is 310 lines of code and processes
about 140 instructions per second. Neither has been
much optimized, so these rates can probably be
improved. Because information is not maintained
across labels. neither program requires much memory.

cacher and assigner make typical object programs
5-109, smaller and 10-15% faster. In addition, cacher’s
window definition makes the compiler’s peephole
optimizer run about 30% faster and yield code that is
20% shorter than the version of the peephole optimizer
that uses a fixed window. The three programs work

131

together to allow, for example, a naive code generator
for the PDP-11 to yield code that is typically at least as
good as that produced by UNIX’s machine-dependent C
compiler. Similar results have been observed for
implementations for the DECsystem-10, the CDC
Cyber 175, and the Intel 8080.

cacher is retargeted by replacing the patterns that
identify register names and by revising the functions
that determine cost and interference. The cost function
accepts two s-exprs and returns the cheaper. Usually,
s-exprs matching a register pattern are preferred to
those matching simple memory references, which are
preferred to those matching indirect memory refer-
ences. This function must be revised for each machine,
but the change typically effects fewer than ten lines of
code.

The interference function reports a conflict when
assignment to cdst invalidates a cache entry sre. This
happens when ¢dst appears in src. when cdst indexes an
array used in sr¢, when c¢dst indexes a global array and
src uses parameter array, and when cdst indexes a
parameter array and src¢ uses global array. These rules
involve fewer than ten lines of machine-dependent
code, though languages with more opportunities for
aliasing [Aho] than Y (e.g., pointers) might require a
few more.

assigner is retargeted by replacing the patterns that
identify the names and numbers of the machine regis-
ters and by giving code templates for loading and stor-
ing such registers. These changes are typically simpler
than those made to cacher.

6. Discussion

Conventional code generators optimize as early as
possible. This often simplifies the requisite analysis
and avoids machine-dependence. but it may sacrifice
some code quality. Whenever an intermediate code is
expanded, it is possible for the expansion to introduce
optimizable patterns that will be missed by ‘early’
optimizers. Experience with cacher shows that at least
one optimization traditionally applied to machine-
independent triples or quadruples can be applied at
reasonable cost to equivalent register transfers. It is
now natural to seek other optimizations that can be
usefully applied to object code. For example, address-
expansion often produces code that can be moved out
of loops and that needs global register allocation.
Work in progress is adapting such existing optimiza-
tions to the machine level, but other optimizations may
merit similar treatment.

Acknowledgment

Dave Hanson provided useful advice and parts of
the Y compiler.

References

A. V. Aho and J. D. Ullman. Principles of Compiler
Design. Addison-Wesley, 1977.

C. G. Bell and A. Newell. Computer Structures:
Readings and Examples. McGraw-Hill, 1971.

R. G. G. Cattell. Automatic derivation of code genera-
tors from machine descriptions. ACM Transactions
on Programming Languages and Systems 2(2):173-190,
April 1980.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J.
Cocke, M. E. Hopkins, and P. W. Markstein. Register
allocation via coloring. Computer Languages 6(1):47-
57, January 1981.

J. W. Davidson and C. W. Fraser. The design and
application of a retargetable peephole optimizer.
ACM Transactions on Programming Languages and
Systems 2(2):191-202, April 1980.

132

R. A. Freiburghouse. Register allocation via usage
counts. Communications of the ACM 17(11):638-642,
November 1974.

R. S. Glanville and S. L. Graham. A new method for
compiler code generation. Conference Record of the
Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages:231-240, January 1978.

D. Gries. Compiler Construction for Digital Comput-
ers. Wiley, 1971.

D. R. Hanson. The Y programming language. SI/G-
PLAN Notices 16(2):59-68, February 1981.

B. W. Kernighan and D. M. Ritchie. The C Program-
ming Language. Prentice-Hall, 1978.

R. L. Sites. Machine-independent register allocation.
SIGPLAN Notices 14(8):221-225, August 1979.

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O.
Hobbs, and C. M. Geschke. The Design of an Optim-
izing Compiler. American Elsevier, 1975.

