
Proceedings of the ACM SIGPLAN '84 Symposium on Com?iler Construction
SIGPLAN Notices Vol. 19, No. 6, June 198~

Automatic Generation of Peephole Optimizations~

Jack W. Davidson
Dept. of Applied Mathematics and Computer Science

University of Virginia
Charlottesville, VA 22901

Christopher W. Fraser
Dept. of Computer Science

University of Arizona
Tucson, AZ 85721

Abstract

This paper describes a system that automatically
generates peephole optimizations. A general
peephole optimizer driven by a machine description
produces optimizations at compile-compile time for
a fast, pattern-directed, compile-time optimizer.
They form part of a compiler that simplifies retarget-
ing by substituting peephole optimization for case
analysis.

1. Introduction

Code generators often create inefficient juxtapo-
sitions. For example, incrementing and testing a
variable can create a redundant comparison if the
code for the increment automatically sets a condition
code register. Correcting this in the code generator
complicates case analysis combinatorially, since each
combination of language features may generate a
unique juxtaposi t ion [9], It is often cheaper to gen-
erate code locally and then use a peephole optimizer
to improve inefficient juxtapositions. Peephole
optimization typically reduces code size by 10-50%
[14, 17]. Even the new code generators driven by
machine descriptions [6] benefit f rom peephole
optimization [2].

Classical peephole optimizers [1, 14, 15, 17]
rapidly correct a few hand-written, machine-specific

]This work was supported in part by the National Science Founda-
tion under Grant MCS-7802545.
Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and or specific per-
mission.
©1984 ACM 0-89791-139-3/84[0600/0111500.75

patterns. For example, the ambitious " F I N A L "
optimizer in the BLISS-I i compiler [17] deletes
unnecessary comparisons, exploits special-case
instructions and exotic addressing modes, coalesces
chains of branches, and deletes unreachable code.
Unfortunately, good patterns can be hard to identify
and are language-, compiler-, and machine-specific.

A recent alternative to classical peephole optimiz-
ers [3] uses a machine description to simulate adja-
cent instructions, replacing them, wherever possible,
with an equivalent singleton. Such machine-directed
optimizers use no patterns, so they are more
thorough and portable than their classical counter-
parts, but they are slower. Their thoroughness
allows the use of naive, easily retargeted code genera-
tors, but verbose code makes optimization speed
even more crucial.

This paper describes a system that automatically
generates patterns for a fast classical peephole optim-
izer. A modern machine-directed optimizer is run at
compile-compile time, and patterns for a fast, classi-
cal compile-time peephole optimizer are automati-
cally inferred from its output. This combines the
thoroughness and retargetability of a machine-
directed peephole optimizer with the speed of a clas-
sical peephole optimizer. This has sped up the
peephole optimization phase of a retargetable com-
piler by a factor of five.

2. A Machine-Directed Optimizer

The system uses a retargetable pe'ephole optim-
izer called PO. Other documents elaborate on PO
itself [3, 4]; this paper summarizes it only enough to
introduce a new application: generating patterns for
a fast, classical peephole optimizer.

111

cwfraser
Note
© ACM, 1984. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 1984 SIGPLAN Symposium on Compiler construction, {0362-1340, (1984)} http://doi.acm.org/10.1145/502874.502885

Given an assembly language program and a sym-
bolic machine description, PO simulates adjacent
instructions and, where possible, replaces them with
an equivalent single instruction. Each machine
description is a grammar for syntax-directed transla-
tion between assembly language and register
transfers. For example, the production

mov l s re ,ds t :=: ds t = src; NZ = sre ? 0;

describes the VAX movl instruction, which copies its
first operand onto its second and sets the condition
code to reflect the sign of the result. Similar produc-
tions describe addressing modes.

To improve an instruction, PO must know its
effect, that is, the register transfers that it performs.
Early versions of PO computed effects by matching
assembler instructions against the assembler syntax
patterns above and instantiating the corresponding
register transfer patterns. The most recent version
skips this with a compiler that emits register transfers
directly. Register transfers are no harder to emit
than assembly code.

Once PO has the effect of each instruction, it sym-
bolically simulates two- and three-instruction
sequences to form their combined effect. PO then
searches the machine description for an instruction
with this combined effect. If it finds one, it replaces
the original instructions with the new one. For
example, the effects of the VAX instructions

movl X,rl
sub l2 Y , r l

are

r [1] = m [X] ; NZ = m [X] ? 0;

r [1] = r [1] - r e [Y] ; NZ - r [1] - r e [Y] ? 0;

Symbolic simulation combines these to yield

r [1] = m [X] - r e [Y] ; NZ = m [X] - m [Y] ? O;

which is realized by the instruction

subl3 Y,X, rl

so this instruction replaces the two above.

Unlike classical peephole optimizers, PO has no
pat terns: it combines all possible pairs and triples.
As a result, its effect can be described formally and
concisely: when it is finished, no one-, two-, or
three-instruction sequence can be replaced with a
cheaper single instruction having the same effect.
This thoroughness allows code generators to forgo
case analysis and emit only a small subset of the
machine's instructions and addressing modes (e.g.,
one form of add, one form of subtract). PO replaces
them with better instructions as it combines adjacen-

cies. A compiler for the programming language v [8]
based on this technique [4, 5] has been retargeted to
seven different architectures, some in as few as three
man-days. It emits code comparable to host-specific
compilers.

This reliance on peephole optimization makes
optimization speed especially crucial, and PO is
slower than classical target-specific peephole optim-
izers. The Y compiler runs at a fourth the speed of
the UNIX portable C compiler [10], and PO uses
almost half of its time. Proposals to speed up optim-
izers like eo are already emerging~ [7, 1 I, 12]. They
propose to perform at compile-compile time some of
the symbolic simulation that PO performs at compile
time. This entails considering at compile-compile
time all possible pairs of instructions [12] or all that
use certain rules (like "eliminate redundant instruc-
tions" [7, 11]). Naturally, trade-offs appear likely - -
the first approach may be costly on some machines,
the second may miss optimizations, and both may
generate unused optimizations though the propo-
sals certainly merit further investigation. The
software described below complements these
approaches by automatically inferring patterns from
PO'S behavior on sample data.

3. Automatic Generation of Patterns

To improve speed, PO is now used at compile-
compile time to generate patterns for a fast compile-
time optimizer, called HOP, which may then be used
in PO's place. HOP patterns are encoded as text with
embedded pattern variables of the form $i to denote
context-sensitive operands. Thus the pattern

r [$ 1] = m [$ 2]
r [$ 1] = r [$ 1] - m [$ 3]

r [$1] = m [$ 2] - m [$ 3]

specifies that register transfers like

r [2] = m [X]

r [2] = r [2] - m [Y]

should be replaced with

r [2] = m [X] - m [Y]

Other classical peephole optimizers use similar
encodings [14, 16]. An appendix gives further exam-
ples of such optimizations and their application.

i"Only one of these proposals reports a prototype [12]. It
is more powerful than an early version of PO, though not
the current version. It considers O(N) pairs to PO'S O(N),
and, though it appears likely that adaptations could run in
linear time, it is too early to compare their speed with PO'S.

112

HOP patterns are inferred from PO's behavior on a
"training" set. AS an option, PO can record each
replacement it makes. For example, when PO makes
a replacement like the one above, it writes

r [2] = m[X]
r [2] = r [2] - m[Y]

r [2] = m[X] - m[Y]

to a diagnostic file.

This output is automatically reduced to patterns
by replacing each distinct assembly-time constant
with $i. For example, the diagnostic output above
would become

r [$1] = m[$2]
r [$1] = r [$1] - m[$3]

r [$1] = rn[$2] - rn[$3]

which is the pattern at the head of this section. The
syntax of assembly-time constants is potentially
target-specific. HOP is retargeted by specifying this
syntax.

PO records the last use of each register in each
block, because this allows it to make replacements
that would otherwise change the effect of the pro-
gram. When this information is used, it is also
recorded in the diagnostic output:

r [2] = i
r [3] = m [r [2]] (r [2] dead)

r [3] = m [i]

These "ob i tuar ies" are automat ica l ly reduced to pat-
terns with the rest of the diagnostic output. Thus the
example above yields the pattern

r [$1] = $2
r [$3] = m[r [$1]] (r [$1] dead)

r [$3] = m[$2]

The appendix displays several such optimizations.

A few proposed patterns are too general. For
example, the DECSystem-10 diagnostic output

r [2] = m[X]
r [2] = r [2] + 1
m[X] = r [2] (r [2] dead)

r n [x] : m [X] + 1

should not yield the pattern

r[$1] = m[$2]
r[$1] = r [$1] + $3
m[$2] = r [$1] (r [$1] dead)

m[$2] = m[$2] + $3

because the replacement is only valid if the increment
$3 is 1. The validity of proposed patterns like the one
above could be checked with the machine description
much as PO checks proposed combinations of
instructions. When the instruction checker deter-
mined that $3 could only match 1, it could rewrite the
pattern accordingly. At present, a simpler expedient
is used: constants like zero and one that are special
to some instructions (i.e., that appear explicitly in the
machine description) are added to an exception list
and never replaced with $i. This generates a few
extra patterns when these constants appear in con-
texts where they are not special (e.g., as register
indices), but the number of these is small.

Given the established simplicity of typical pro-
grams [13], compiling a large, varied "training"
testbed with Po should yield enough diagnostic out-
put to generate most needed patterns. At present, the
testbed is the Y compiler's front end, which compiles
Y into a simple abstract machine code, plus a few
extra test cases, which exercise the few operators sel-
dom used in the compiler. Figure 1 plots for this
testbed the number of VAX patterns generated
versus the number of actual replacements from which
the patterns are generated. The pattern file grows
rapidly at first and then levels off. The 17,138
replacements generate only 627 distinct patterns.
Using this pattern file, HOP yields the same result as
PO when compiling routines from the testbed. When
compiling other typical routines, HOP's results are
only about 2% larger than PO'S, which suggests that
even this small testbed is adequate.

Ultimately, it should be possible to do without a
testbed, by using an incremental training phase. This
could be implemented by the following changes to
PO. After replacing a pair or triple, PO would inter-
nally record the pattern represented by the replace-
ment; if the pair or triple could not be replaced, PO
would note this as well. Also, PO would be changed
to consult this record and use the fast algorithm
described below to replace or reject juxtapositions
that have appeared before; it would fall back on its
original, slower algorithm only for juxtapositions
that had never appeared before. Thus PO would
reach HOP's speed after a few compilations, and it
would never miss an optimization due to insufficient
training because PO's general mechanism would be
available for new juxtapositions.

113

4, A Pattern-Directed Optimizer

HOP matches patterns without actual string mani-
pulation, by separating each instruction's pattern or
"skeleton" from its operands as it reads them. This is
accomplished at compile time by the same procedure
used to form patterns at compile-compile time. For
example, the instruction

r [2] = r[21 - m [Y]

is reduced to the skeleton

r [$1] = r [$1] - m[$21

plus the operands 2 and Y, respectively. That is, the
instruction is represented by the triple

r [$1] = r [$1] - m [$ 2] , 2, Y

This representation is a little like conventional
assembly code. The skeleton in the first field is deter-
mined roughly by the instruction's opcode and mode
bits. The operands in the remaining fields are deter-
mined roughly by the instruction's address and regis-
ter fields.

Hashing helps HOP match patterns and form
replacements fast. HOP stores skeletons and
operands uniquely in a hash table, so an input skele-
ton is compared with a line from a pattern by merely
comparing two addresses. This operation is logically
similar to, and costs about the same as, comparing
two binary opcodes in a classical peephole optimizer.
If a run of input skeletons matches some complete
pattern, then inter-instruction operand consistency is
checked, again by comparing addresses. Finally,
HOP forms replacements without actual string mani-
pulation. The skeleton for the replacement instruc-
tion is the last line of the successful pattern, and the
operands for the replacement instruction are formed
by reordering the input operands. Thus the typical
pattern is matched and, if successful, replaced, by
comparing and moving about a dozen pointers.

One detail complicates this procedure. The $i in
input skeletons are numbered from one, so pattern-
matching without string operations requires
renumbering the $i from each line of each pattern
when the pattern file is read. For example, the input

r[4] = m[A]
r[4] = r[4] - re[B]

is translated into the triples

r [$ 1] = m[$21, 4, A
r [$ 1] = r [$ 1] - m [$ 2] , 4, B

as it is read. To compare such triples with the pattern

r [$1] = m [$ 2]
r [$1] = r [$1] - m [$ 3]

r [$1] = m [$ 2] - m [$ 3]

without string operations, the $i of the second line of
the pattern are renumbered to yield

r [$1] = r [$1] - m [$ 2]

as the pattern file is read. The two strings are now
identically equal and can be compared by comparing
addresses in the hash table. A record of the
renumbering is retained for checking inter-
instruction operand consistency.

The input triples above are compared with the
pattern above as follows. First, the two input skele-
tons

r[$1] = m[$2]
r[$1] = r[$1] - m[$2]

are compared with the first two (renumbered) lines of
the pattern

r [$1] = m[$21
r [$1] = r [$1] - m [$ 2]

by comparing two pairs of pointers. Next, HOP
checks that $i denotes the same operand in both
input instructions. Since $1 is the only $i that
appears more than once in the original (unrenum-
bered) pattern?, this merely compares the first
operand from the first instruction (the first 4) with
the first operand from the second instruction (the
second 4), again by comparing two string table
addresses. Since all comparisons have succeeded, a
replacement instruction is formed. Its skeleton is the
last line of the pattern

r [$11 = m[$21 - m [$ 3]

and its three operands are the 4 and A from the first
instruction and the B from the second instruction.
This represents the instruction

r[4] = m[A] - m[B]

which is the desired replacement for the two instruc-
tions above.

Hashing also helps locate applicable patterns
rapidly. HOP stores its patterns in a hash table keyed
by the hashed addresses of the (uniquely stored)
skeletons that each matches. Thus HOP identifies the
patterns that apply to a given input sequence by
hashing the addresses of the skeletons from the input

I'$2 appears more than once in the renumbered pattern,
but this is an artifact of renumbering and so does not re-
quire consistency checking.

114

sequence. If this hash table is made large enough to
make collisions rare, HOP identifies any applicable
patterns in nearly constant time.

These measures make HOP fast, about 5 times fas-
ter than PO. In a typical application, it read 269 lines,
performed 136 replacements, and wrote out the
results in 1.3 CPU seconds on a VAX-I1/780. It
spends most of its time reading its input and building
the structures above.
replacements take less
time, the pattern file
compile-compile time.
incorporated patterns
takes 120K bytes.

HOP can also be

The actual matching and
than 5% of its time. To save
is incorporated into HOP at
For the VAX, HOP plus these
take 150K bytes where PO

used for code generation.
Abstract machines are often mapped onto real
machines by macros, and single-input replacement
patterns are essentially macros. A compiler can thus
be retargeted by writing a machine description and
some patterns for naive code generation. These will
be augmented by automatically generated optimiza-
tion patterns. The use of a single program for code
generation and optimization should make compilers
faster, simpler, and easier to retarget.

HOP can also be used on assembly code. The
hand-written patterns for code generation could emit
assembly code, for this can be mapped to and from
register transfers for PO by translators automatically
generated from the machine description [3].
Translating assembly code to register transfers would
slow Po, but this is unimportant now that HOP has
replaced PO at compile time.

Acknowledgments
The authors thank Dave Hanson for his many

helpful comments, and Torben Nielsen for his techni-
cal assistance.

Appendix

This appendix traces the optimization of the
VAX code for

j = i + 4

The figure below gives postfix intermediate code and
corresponding naive object code for this statement.

postfix object code

1. push i r [2] = m[i]
2. pushc 4 r [3] = 4
3. add r [2] = r [2] + r [3] (r [3] dead)
4. pop j m[j] = r [2] (r [2] dead)

Initially, the pattern

r [$1] = $2
r [$3] = r [$3] + r [$1] (r [$1] dead)

r [$3] = r [$3] + $2

replaces instructions 2 and 3 with

r [2] = r [2] ÷ 4

Next, the pattern

r[$11 = m[$2]
r [$1] = r [$1] + $3

r [$1] = m[$2] + $3

combines instruction 1 with this new instruction,
yielding

r[2] = mill + 4

Finally, the pattern

r [$1] = m[$2] * $3
m[$4] = r [$1] (r [$1] dead)

m[$4] = m[$2] + $3

replaces this last instruction and instruction 4 with

m[j] = m[i] + 4

which represents the VAX instruction

addl3 $4,i,j

Thus the four original instructions have been
replaced with one.

References

1o

2.

4.

.

J. T. Bagwell, Jr., Local Optimizations,
SIGPLANNotices 5, 7 (July 1970), 52-66.

T. Crowley, Combining Table-driven Effect
Selection and Description-Driven Peephole
Optimization for Automatic Code Generation,
MS thesis, MIT, September 1982.

J. W. Davidson and C. W. Fraser, The Design
and Application of a Retargetable Peephole
Optimizer, A CM Trans. Prog. Lang. and
Systems 2, 2 (April 1980), 191-202.

J. W. Davidson, Simplifying Code Generation
Through Peephole Optimization, PhD
dissertation, University of Arizona, December
1981.

J. W. Davidson and C. W. Fraser, Code
Selection Through Object Code Optimization,
A CM Trans. Prog. Lang. and Systems, to
appear.

115

6. M. Ganapathi, C. N. Fischer and J. L.
Hennessy, Retargetable Compiler Code
Generation, Computing Surveys 14, 4
(December 1982), 573-592.

7. R. Giegerich, A Formal Framework for the
Derivation of Machine-Specific Optimizers,
A CM Trans. Prog. Lang. and Systems 5, 3
(July 1983), 478-498.

8. D .R. Hanson, The Y Programming Language,
SIG PLAN Notices 16, 2 (Feb. 1981), 59-68.

9. W. Harrison, A New Strategy for Code
Generation - The General Purpose Optimizing
Compiler, Conf. Rec. 4th A C M Syrup. on
Prin. of Programming Languages, January
1977, 29-37.

10. S . C . Johnson, A Portable Compiler: Theory
and Practice, Conf. Rec. 5th A CM Syrup. on
Prin. o f Programming Languages, Jan. 1978,
97-104.

l l. P. B. Kessler, Machine Dependencies in
Retargetable Compiler Construction,
Dissertation proposal, Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, May 1982.

12. R.R. Kessler, Peephole Optimization in COG,
Operating Note 76, Utah Symbolic
Computation Group, Computer Science
Department, University of Utah, June 1983.

13. D.E. Knuth, An Empirical Study of Fortran
Programs, Software--Practice & Experience 1,
2 (April-June 1971), 105-133.

14. D. A. Lamb, Construction of a Peephole
Optimizer, Software--Practice & Experience
11(1981), 638-647.

15. W. M. McKeeman, Peephole Optimization,
Comm. ACMS, 7 (July 1965), 443-444.

16. A.S . Tanenbaum, H. van Staveren and J. W.
Stevenson, Using Peephole Optimization on
Intermediate Code, A CM Trans. Prog. Lang.
and Systems 4, I (January 1982), 21-36.

17. W. Wulf, R. K. Johnsson, C. B. Weinstock, S.
O. Hobbs and C. M. Geschke, The Design of
an Optimizing Compiler, North Holland, 1975.

700

Figure I, URX Pa~ern Fi le Brow~h

600

500

P

a 400

r 300
n

5

200

I00

L
I

L
i
L j

I - ' -

t [, , l

0 5000 I0000 15000 20000

Replacements

116

