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Abstract 

This paper  describes a system that automatically 
generates peephole optimizations. A general 
peephole optimizer driven by a machine description 
produces optimizations at compile-compile time for 
a fast, pattern-directed, compile-time optimizer. 
They form part  of a compiler that simplifies retarget- 
ing by substituting peephole optimization for case 
analysis. 

1. Introduction 

Code generators often create inefficient juxtapo- 
sitions. For  example,  incrementing and testing a 
variable can create a redundant comparison if the 
code for the increment automatically sets a condition 
code register. Correcting this in the code generator 
complicates case analysis combinatorially, since each 
combination of language features may generate a 
unique juxtaposi t ion [9], It is often cheaper to gen- 
erate code locally and then use a peephole optimizer 
to improve inefficient juxtapositions. Peephole 
optimization typically reduces code size by 10-50% 
[14, 17]. Even the new code generators driven by 
machine descriptions [6] benefit f rom peephole 
optimization [2]. 

Classical peephole optimizers [1, 14, 15, 17] 
rapidly correct a few hand-written, machine-specific 
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patterns. For  example, the ambitious " F I N A L "  
optimizer in the BLISS-I i  compiler [17] deletes 
unnecessary comparisons, exploits special-case 
instructions and exotic addressing modes, coalesces 
chains of  branches, and deletes unreachable code. 
Unfortunately, good patterns can be hard to identify 
and are language-, compiler-, and machine-specific. 

A recent alternative to classical peephole optimiz- 
ers [3] uses a machine description to simulate adja- 
cent instructions, replacing them, wherever possible, 
with an equivalent singleton. Such machine-directed 
optimizers use no patterns, so they are more 
thorough and portable than their classical counter- 
parts, but they are slower. Their thoroughness 
allows the use of  naive, easily retargeted code genera- 
tors, but verbose code makes optimization speed 
even more crucial. 

This paper describes a system that automatically 
generates patterns for a fast classical peephole optim- 
izer. A modern machine-directed optimizer is run at 
compile-compile time, and patterns for a fast, classi- 
cal compile-time peephole optimizer are automati-  
cally inferred from its output. This combines the 
thoroughness and retargetability of a machine- 
directed peephole optimizer with the speed of a clas- 
sical peephole optimizer. This has sped up the 
peephole optimization phase of a retargetable com- 
piler by a factor of five. 

2. A Machine-Directed Optimizer 

The system uses a retargetable pe'ephole optim- 
izer called PO. Other documents elaborate on PO 
itself [3, 4]; this paper  summarizes it only enough to 
introduce a new application: generating patterns for 
a fast, classical peephole optimizer. 
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Given an assembly language program and a sym- 
bolic machine description, PO simulates adjacent 
instructions and, where possible, replaces them with 
an equivalent single instruction. Each machine 
description is a grammar for syntax-directed transla- 
tion between assembly language and register 
transfers. For example, the production 

mov l  s re ,ds t  :=: ds t  = src;  NZ  = sre ? 0; 

describes the VAX movl instruction, which copies its 
first operand onto its second and sets the condition 
code to reflect the sign of the result. Similar produc- 
tions describe addressing modes. 

To improve an instruction, PO must know its 
effect, that is, the register transfers that it performs. 
Early versions of PO computed effects by matching 
assembler instructions against the assembler syntax 
patterns above and instantiating the corresponding 
register transfer patterns. The most recent version 
skips this with a compiler that emits register transfers 
directly. Register transfers are no harder to emit 
than assembly code. 

Once PO has the effect of each instruction, it sym- 
bolically simulates two- and three-instruction 
sequences to form their combined effect. PO then 
searches the machine description for an instruction 
with this combined effect. If it finds one, it replaces 
the original instructions with the new one. For 
example, the effects of the VAX instructions 

movl X,rl 
sub l2  Y , r l  

are 

r [ 1 ]  = m [ X ] ;  NZ  = m [ X ]  ? 0; 

r [ 1 ]  = r [ 1 ]  - r e [ Y ] ;  NZ  - r [ 1 ] -  r e [ Y ]  ? 0; 

Symbolic simulation combines these to yield 

r [ 1 ]  = m [ X ]  - r e [Y ] ;  NZ  = m [ X ]  - m [ Y ]  ? O; 

which is realized by the instruction 

subl3 Y,X, rl 

so this instruction replaces the two above. 

Unlike classical peephole optimizers, PO has no  
pat terns:  it combines all possible pairs and triples. 
As a result, its effect can be described formally and 
concisely: when it is finished, no one-, two-, or 
three-instruction sequence can be replaced with a 
cheaper single instruction having the same effect. 
This thoroughness allows code generators to forgo 
case analysis and emit only a small subset of the 
machine's instructions and addressing modes (e.g., 
one form of add, one form of subtract). PO replaces 
them with better instructions as it combines adjacen- 

cies. A compiler for the programming language v [8] 
based on this technique [4, 5] has been retargeted to 
seven different architectures, some in as few as three 
man-days. It emits code comparable to host-specific 
compilers. 

This reliance on peephole optimization makes 
optimization speed especially crucial, and PO is 
slower than classical target-specific peephole optim- 
izers. The Y compiler runs at a fourth the speed of 
the UNIX portable C compiler [10], and PO uses 
almost half of its time. Proposals to speed up optim- 
izers like eo are already emerging~ [7, 1 I, 12]. They 
propose to perform at compile-compile time some of 
the symbolic simulation that PO performs at compile 
time. This entails considering at compile-compile 
time all possible pairs of instructions [12] or all that 
use certain rules (like "eliminate redundant instruc- 
tions" [7, 11]). Naturally, trade-offs appear likely - -  
the first approach may be costly on some machines, 
the second may miss optimizations, and both may 
generate unused optimizations though the propo- 
sals certainly merit further investigation. The 
software described below complements these 
approaches by automatically inferring patterns from 
PO'S behavior on sample data. 

3. Automatic Generation of Patterns 

To improve speed, PO is now used at compile- 
compile time to generate patterns for a fast compile- 
time optimizer, called HOP, which may then be used 
in PO's place. HOP patterns are encoded as text with 
embedded pattern variables of the form $i to denote 
context-sensitive operands. Thus the pattern 

r [ $ 1 ]  = m [ $ 2 ]  
r [ $ 1 ]  = r [ $ 1 ]  - m [ $ 3 ]  

r [ $1 ]  = m [ $ 2 ]  - m [ $ 3 ]  

specifies that register transfers like 

r [ 2 ]  = m [ X ]  

r [ 2 ]  = r [ 2 ]  - m [ Y ]  

should be replaced with 

r [2 ]  = m [ X ]  - m [ Y ]  

Other classical peephole optimizers use similar 
encodings [14, 16]. An appendix gives further exam- 
ples of such optimizations and their application. 

i"Only one of these proposals reports a prototype [12]. It 
is more powerful than an early version of PO, though not 
the current version. It considers O(N ) pairs to PO'S O(N), 
and, though it appears likely that adaptations could run in 
linear time, it is too early to compare their speed with PO'S. 
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HOP patterns are inferred from PO's behavior on a 
"training" set. AS an option, PO can record each 
replacement it makes. For example, when PO makes 
a replacement like the one above, it writes 

r [2]  = m[X ]  
r [2]  = r [2 ]  - m[Y ]  

r [2 ]  = m[X ]  - m[Y ]  

to a diagnostic file. 

This output is automatically reduced to patterns 
by replacing each distinct assembly-time constant 
with $i. For example, the diagnostic output above 
would become 

r [$1] = m[$2]  
r [$1] = r [$1] - m[$3]  

r [$1] = rn[$2] - rn[$3] 

which is the pattern at the head of this section. The 
syntax of assembly-time constants is potentially 
target-specific. HOP is retargeted by specifying this 
syntax. 

PO records the last use of each register in each 
block, because this allows it to make replacements 
that would otherwise change the effect of the pro- 
gram. When this information is used, it is also 
recorded in the diagnostic output: 

r [2 ]  = i 
r [3 ]  = m [ r [ 2 ] ]  (r [2] dead) 

r [3 ]  = m [ i ]  

These "ob i tuar ies"  are automat ica l ly  reduced to pat- 
terns with the rest of the diagnostic output. Thus the 
example above yields the pattern 

r [$1] = $2 
r [$3] = m[ r [$1 ] ]  (r [$1] dead) 

r [$3] = m[$2]  

The appendix displays several such optimizations. 

A few proposed patterns are too general. For 
example, the DECSystem-10 diagnostic output 

r [2 ]  = m[X ]  
r [2 ]  = r [2 ]  + 1 
m[X]  = r [2 ]  ( r [2]  dead) 

r n [ x ]  : m [ X ]  + 1 

should not yield the pattern 

r[$1] = m[$2]  
r[$1] = r [$1] + $3 
m[$2]  = r [$1] (r [$1] dead) 

m[$2]  = m[$2]  + $3 

because the replacement is only valid if the increment 
$3 is 1. The validity of proposed patterns like the one 
above could be checked with the machine description 
much as PO checks proposed combinations of 
instructions. When the instruction checker deter- 
mined that $3 could only match 1, it could rewrite the 
pattern accordingly. At present, a simpler expedient 
is used: constants like zero and one that are special 
to some instructions (i.e., that appear explicitly in the 
machine description) are added to an exception list 
and never replaced with $i. This generates a few 
extra patterns when these constants appear in con- 
texts where they are not special (e.g., as register 
indices), but the number of these is small. 

Given the established simplicity of typical pro- 
grams [13], compiling a large, varied "training" 
testbed with Po should yield enough diagnostic out- 
put to generate most needed patterns. At present, the 
testbed is the Y compiler's front end, which compiles 
Y into a simple abstract machine code, plus a few 
extra test cases, which exercise the few operators sel- 
dom used in the compiler. Figure 1 plots for this 
testbed the number of VAX patterns generated 
versus the number of actual replacements from which 
the patterns are generated. The pattern file grows 
rapidly at first and then levels off. The 17,138 
replacements generate only 627 distinct patterns. 
Using this pattern file, HOP yields the same result as 
PO when compiling routines from the testbed. When 
compiling other typical routines, HOP's results are 
only about 2% larger than PO'S, which suggests that 
even this small testbed is adequate. 

Ultimately, it should be possible to do without a 
testbed, by using an incremental training phase. This 
could be implemented by the following changes to 
PO. After replacing a pair or triple, PO would inter- 
nally record the pattern represented by the replace- 
ment; if the pair or triple could not be replaced, PO 
would note this as well. Also, PO would be changed 
to consult this record and use the fast algorithm 
described below to replace or reject juxtapositions 
that have appeared before; it would fall back on its 
original, slower algorithm only for juxtapositions 
that had never appeared before. Thus PO would 
reach HOP's speed after a few compilations, and it 
would never miss an optimization due to insufficient 
training because PO's general mechanism would be 
available for new juxtapositions. 
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4, A Pattern-Directed Optimizer 

HOP matches patterns without actual string mani- 
pulation, by separating each instruction's pattern or 
"skeleton" from its operands as it reads them. This is 
accomplished at compile time by the same procedure 
used to form patterns at compile-compile time. For 
example, the instruction 

r [2 ]  = r[21 - m [ Y ]  

is reduced to the skeleton 

r [ $1 ]  = r [ $1 ]  - m[$21  

plus the operands 2 and Y, respectively. That is, the 
instruction is represented by the triple 

r [ $1 ]  = r [ $1 ]  - m [ $ 2 ] ,  2, Y 

This representation is a little like conventional 
assembly code. The skeleton in the first field is deter- 
mined roughly by the instruction's opcode and mode 
bits. The operands in the remaining fields are deter- 
mined roughly by the instruction's address and regis- 
ter fields. 

Hashing helps HOP match patterns and form 
replacements fast. HOP stores skeletons and 
operands uniquely in a hash table, so an input skele- 
ton is compared with a line from a pattern by merely 
comparing two addresses. This operation is logically 
similar to, and costs about the same as, comparing 
two binary opcodes in a classical peephole optimizer. 
If a run of input skeletons matches some complete 
pattern, then inter-instruction operand consistency is 
checked, again by comparing addresses. Finally, 
HOP forms replacements without actual string mani- 
pulation. The skeleton for the replacement instruc- 
tion is the last line of the successful pattern, and the 
operands for the replacement instruction are formed 
by reordering the input operands. Thus the typical 
pattern is matched and, if successful, replaced, by 
comparing and moving about a dozen pointers. 

One detail complicates this procedure. The $i in 
input skeletons are numbered from one, so pattern- 
matching without string operations requires 
renumbering the $i from each line of each pattern 
when the pattern file is read. For example, the input 

r[4] = m[A] 
r[4] = r[4] - re[B] 

is translated into the triples 

r [ $ 1 ]  = m[$21,  4, A 
r [ $ 1 ]  = r [ $ 1 ]  - m [ $ 2 ] ,  4, B 

as it is read. To compare such triples with the pattern 

r [ $1 ]  = m [ $ 2 ]  
r [ $1 ]  = r [ $1 ]  - m [ $ 3 ]  

r [ $1 ]  = m [ $ 2 ]  - m [ $ 3 ]  

without string operations, the $i of the second line of 
the pattern are renumbered to yield 

r [ $1 ]  = r [ $1 ]  - m [ $ 2 ]  

as the pattern file is read. The two strings are now 
identically equal and can be compared by comparing 
addresses in the hash table. A record of the 
renumbering is retained for checking inter- 
instruction operand consistency. 

The input triples above are compared with the 
pattern above as follows. First, the two input skele- 
tons 

r[$1] = m[$2] 
r[$1] = r[$1] - m[$2] 

are compared with the first two (renumbered) lines of 
the pattern 

r [ $1 ]  = m[$21 
r [ $1 ]  = r [ $1 ]  - m [ $ 2 ]  

by comparing two pairs of pointers. Next, HOP 
checks that $i denotes the same operand in both 
input instructions. Since $1 is the only $i that 
appears more than once in the original (unrenum- 
bered) pattern?, this merely compares the first 
operand from the first instruction (the first 4) with 
the first operand from the second instruction (the 
second 4), again by comparing two string table 
addresses. Since all comparisons have succeeded, a 
replacement instruction is formed. Its skeleton is the 
last line of the pattern 

r [$11 = m[$21  - m [ $ 3 ]  

and its three operands are the 4 and A from the first 
instruction and the B from the second instruction. 
This represents the instruction 

r[4] = m[A] - m[B] 

which is the desired replacement for the two instruc- 
tions above. 

Hashing also helps locate applicable patterns 
rapidly. HOP stores its patterns in a hash table keyed 
by the hashed addresses of the (uniquely stored) 
skeletons that each matches. Thus HOP identifies the 
patterns that apply to a given input sequence by 
hashing the addresses of the skeletons from the input 

I'$2 appears more than once in the renumbered pattern, 
but this is an artifact of renumbering and so does not re- 
quire consistency checking. 
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sequence. If this hash table is made large enough to 
make collisions rare, HOP identifies any applicable 
patterns in nearly constant time. 

These measures make HOP fast, about 5 times fas- 
ter than PO. In a typical application, it read 269 lines, 
performed 136 replacements, and wrote out the 
results in 1.3 CPU seconds on a VAX-I1/780. It 
spends most of its time reading its input and building 
the structures above. 
replacements take less 
time, the pattern file 
compile-compile time. 
incorporated patterns 
takes 120K bytes. 

HOP can also be 

The actual matching and 
than 5% of its time. To save 
is incorporated into HOP at 
For the VAX, HOP plus these 
take 150K bytes where PO 

used for code generation. 
Abstract machines are often mapped onto real 
machines by macros, and single-input replacement 
patterns are essentially macros. A compiler can thus 
be retargeted by writing a machine description and 
some patterns for naive code generation. These will 
be augmented by automatically generated optimiza- 
tion patterns. The use of a single program for code 
generation and optimization should make compilers 
faster, simpler, and easier to retarget. 

HOP can also be used on assembly code. The 
hand-written patterns for code generation could emit 
assembly code, for this can be mapped to and from 
register transfers for PO by translators automatically 
generated from the machine description [3]. 
Translating assembly code to register transfers would 
slow Po, but this is unimportant now that HOP has 
replaced PO at compile time. 
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Appendix 

This appendix traces the optimization of the 
VAX code for 

j = i + 4  

The figure below gives postfix intermediate code and 
corresponding naive object code for this statement. 

postfix object  code 

1. push i r [2 ]  = m[ i ]  
2. pushc 4 r [3 ]  = 4 
3. add r [2 ]  = r [2]  + r [3]  ( r [3]  dead) 
4. pop j m[ j ]  = r [2]  (r [2] dead) 

Initially, the pattern 

r [$1] = $2 
r [$3]  = r [$3]  + r [$1] ( r [$1]  dead) 

r [$3]  = r [$3]  + $2 

replaces instructions 2 and 3 with 

r [2 ]  = r [2 ]  ÷ 4 

Next, the pattern 

r[$11 = m[$2]  
r [$1]  = r [$1]  + $3 

r [$1]  = m[$2 ]  + $3 

combines instruction 1 with this new instruction, 
yielding 

r[2] = mill + 4 

Finally, the pattern 

r [$1]  = m[$2]  * $3 
m[$4]  = r [$1]  (r [$1] dead) 

m[$4]  = m[$2]  + $3 

replaces this last instruction and instruction 4 with 

m[j] = m[i]  + 4 

which represents the VAX instruction 

addl3 $4,i,j 

Thus the four original instructions have been 
replaced with one. 
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